Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 2/7/2014. Cognitive Biases in Decision Making William Siefert, M.S.

Similar presentations

Presentation on theme: "1 2/7/2014. Cognitive Biases in Decision Making William Siefert, M.S."— Presentation transcript:

1 1 2/7/2014

2 Cognitive Biases in Decision Making William Siefert, M.S.

3 3 2/7/2014 Acknowledgements Work based on the research done by Dr Amos Tversky, PhD Dr Daniel Kahneman, PhD Prospect Theory Nobel Prize, 2002 Dr Eric Smith, PhD Dr Paul Slovic, PhD

4 4 2/7/2014 Fear of harm ought to be proportional not merely to the gravity of the harm, but also to the probability of the event. Logic, or the Art of Thinking Antoine Arnould, 1662

5 5 2/7/ x 5 Risk Cube Original Current Objective vs. Subjective data

6 6 2/7/2014 Present Situation Risk matrices are recognized by industry as the best way to: consistently quantify risks, as part of a repeatable and quantifiable risk management process Risk matrices involve human: Numerical judgment Calibration – location, gradation Rounding, Censoring Data updating often approached with under confidence often distrusted by decision makers

7 7 2/7/2014 Goal More accurate and repeatable Systems Engineering Decisions Confidence in correct assessment of probability and value Avoidance of specific mistakes Recommended actions

8 8 2/7/2014 Heuristics and Biases Daniel Kahneman won the Nobel Prize in Economics in 2002 "for having integrated insights from psychological research into economic science, especially concerning human judgment and decision-making under uncertainty. Similarities between cognitive bias experiments and the risk matrix axes show that risk matrices are susceptible to human biases.

9 9 2/7/2014 Anchoring First impression dominates all further thought wheel of fortune spun Number of African nations in the United Nations? Small number, like 12, the subjects underestimated Large number, like 92, the subjects overestimated Obviating expert opinion The analyst holds a circular belief that expert opinion or review is not necessary because no evidence for the need of expert opinion is present.

10 10 2/7/2014 Heuristics and Biases Presence of cognitive biases – even in extensive and vetted analyses – can never be ruled out. Innate human biases, and exterior circumstances, such as the framing or context of a question, can compromise estimates, judgments and decisions. It is important to note that subjects often maintain a strong sense that they are acting rationally while exhibiting biases.

11 11 2/7/2014 Likelihood 1.Frequency of occurrence is objective, discrete 2.Probability is continuous, fiction "Humans judge probabilities poorly" [Cosmides and Tooby, 1996] 3.Likelihood is a subjective judgment (unless mathematical) 'Exposure' by project manager timeless

12 12 2/7/2014 Case Study Industry risk matrix data 1412 original and current risk points Time of first entry known Time of last update known Cost, Schedule and Technical known Subject matter not known Biases revealed Likelihood and consequence judgment

13 13 2/7/2014 Magnitude vs. Reliability [Griffin and Tversky, 1992] Magnitude perceived more valid Data with outstanding magnitudes but poor reliability are likely to be chosen and used Observation: risk matrices are magnitude driven, without regard to reliability

14 14 2/7/ Estimation in a Pre-Define Scale Bias Scale magnitude effects judgment [Schwarz, 1990] Two questions, random 50% of subjects: Please estimate the average number of hours you watch television per week: ____ ____ __X_ ____ ____ ____ More Please estimate the average number of hours you watch television per week: ____ ____ __X_ ____ ____ ____ More

15 15 2/7/2014 Severity Amplifiers Lack of control Lack of choice Lack of trust Lack of warning Lack of understanding Manmade Newness Dreadfulness Personalization Recallability Imminency

16 16 2/7/2014 Situation assessment 5 x 5 Risk Matrices seek to increase risk estimation consistency Hypothesis: Cognitive Bias information can help improve the validity and sensitivity of risk matrix analysis and other Systems Engineering analysis

17 17 2/7/2014 Prospect Theory Decision-making described with subjective assessment of: Probabilities Values and combinations in gambles Prospect Theory breaks subjective decision making into: 1)preliminary screening stage, probabilities and values are subjectively assessed 2)secondary evaluation stage combines the subjective probabilities and utilities

18 18 2/7/2014 Humans judge probabilities poorly * Small probabilities overestimated Large probabilities under estimated

19 19 2/7/2014 Gains and losses are not equal *

20 20 2/7/2014 Subjective Utility Values considered from reference point established by the subjects wealth and perspective Framing Gains and losses are subjectively valued 1-to-2 ratio.

21 21 2/7/2014 Implication of Prospect Theory for the Risk Matrix

22 22 2/7/2014 ANALYSES AND OBSERVATIONS OF INITIAL DATA Impediments for the appearance of cognitive biases in the industry data: 1)Industry data are granular while the predictions of Prospect Theory are for continuous data 2)Qualitative descriptions of 5 ranges of likelihood and consequence non-linear influence in the placement of risk datum points Nevertheless, the evidence of cognitive biases emerges from the data

23 23 2/7/ Probability Centering Bias Likelihoods are pushed toward L = 3 Symmetric to a first order

24 24 2/7/2014 Guess Why the Spike in New Risks

25 25 2/7/2014 Cognitive Biases in Action Engineers: 1.Schedule consequences effect careers 2.Technical consequences effect job performance reviews 3.Cost consequences are remote and associated with management Higher cognizance of Biases will be valuable at the engineering level

26 26 2/7/2014 CONCLUSION First time that the effects of cognitive biases have been documented within the risk matrix Clear evidence that probability and value translations, as likelihood and consequence judgments, are present in industry risk matrix data Steps 1) the translations were predicted by prospect theory, 2) historical data confirmed predictions Risk matrices are not objective number grids Subjective, albeit useful, means to verify that risk items have received risk-mitigating attention.

27 27 2/7/2014 Suggestions for Cognitive Biases improvement Long-term, institutional rationality Team approach Iterations Public review Expert review Biases and errors awareness Requires cultural changes

28 28 2/7/2014 References L. Cosmides, and J. Tooby, Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty, Cognition 58 (1996), D. Kahneman, and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica 46(2) (1979), Nobel, "The Bank of Sweden Prize in Economic Sciences in memory of Alfred Nobel 2002," Retrieved March, 2006 from Nobel Foundation: N. Schwarz, Assessing frequency reports of mundane behaviors: Contributions of cognitive psychology to questionaire construction, Review of Personality and Social Psychology 11 (1990), A. Tversky, and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, Journal of Risk and Uncertainty 5 (1992),

29 29 2/7/2014 Comments ! Questions ?

Download ppt "1 2/7/2014. Cognitive Biases in Decision Making William Siefert, M.S."

Similar presentations

Ads by Google