Presentation is loading. Please wait.

Presentation is loading. Please wait.

NOAA Space Environment Center Space Weather Activities Bill Murtagh NOAA Space Environment Center Boulder, Colorado European Space Weather Week ESTEC November.

Similar presentations

Presentation on theme: "NOAA Space Environment Center Space Weather Activities Bill Murtagh NOAA Space Environment Center Boulder, Colorado European Space Weather Week ESTEC November."— Presentation transcript:

1 NOAA Space Environment Center Space Weather Activities Bill Murtagh NOAA Space Environment Center Boulder, Colorado European Space Weather Week ESTEC November 18, 2005

2 Overview SEC in the National Weather Service Primary SEC Objectives Research/models to Operations Operational Solar Wind Monitor Operational Coronagraph Aviation Support

3 NCEPs include: »National Hurricane Center »Severe Storm Center »Space Environment Center »…more SEC joined NOAAs NWS on 2005 January 9. NWS responsibility now extends from Sea to Sun. –There are NWS processes which affect SEC and the issuance of new products American Meteorological Society (AMS) has welcomed space weather into its fold –Third Special Symposium on Space Weather in Jan 2006 SEC Joins National Weather Service (NWS) as one of the official National Centers for Environmental Prediction (NCEP).

4 Space Weather is now included in the daily and weekly NWS reports to NOAA and DOC leadership Space Weather Update NOAA sunspot group 808 stayed very active this week and produced several significant solar flares (up to R3 on the NOAA Scale). The strong (S3) radiation storm that started Sep 8 ended on Sep 11. Moderate to strong (up to G3) geomagnetic storm conditions were observed from Sep 12-15. During this period, aurora was visible as far south as Colorado and Lajes Field, Azores, Portugal. 09 Sep 2005: NWS Director, D.L. Johnson, briefed space weather conditions to NOAA Chief of Staff (Scott Rayder), who in turn briefed the General Counsel (Stan Sokul) of the Office of Science and Technology Policy in the White House.

5 A few of the agencies and industries that rely on space weather services today: U.S. power grid infrastructure Commercial airline industry Dep. of Transportation ( GPS) NASA human space flight activities Satellite launch and operations DoD Operations DOE Nuclear Reg Comm Schlumberger NY/PJM Grid Ball Loral NESDIS/SOCC Digital Globe Boeing Lockheed Aerospace Echostar NASA Space Command ISS Astronauts FAA American United Airlines Northwest Continental Growth of Space Weather Customers NOAA Space Environment Center Sunspot Cycles Commercial Space Transportation Airline Polar Flights Microchip technology Precision Guided Munitions Cell phones Atomic Clock Satellite Operations Carbon Dating experiments GPS Navigation Ozone Measurements Aircraft Radiation Hazard Commercial TV Relays Communications Satellite Orientation Spacecraft Charging Satellite Reconnaissance & Remote Sensing Instrument Damage Geophysical Exploration. Pipeline Operations Anti-Submarine Detection Satellite Power Arrays Power Distribution Long-Range Telephone Systems Radiation Hazards to Astronauts Interplanetary Satellite experiments VLF Navigation Systems (OMEGA, LORAN) Over the Horizon Radar Solar-Terres. Research & Applic. Satellites Research & Operations Requirements Satellite Orbit Prediction Solar Balloon & Rocket experiments Ionospheric Rocket experiments Short-wave Radio Propagation

6 Transition research understandings and models to operations There is new emphasis in NOAA on research-to-operations transitions; joining NWS has allowed us to ask for additional manpower to implement model transitions. Establish an operational solar wind monitoring program SEC has requested again that NOAA step up to this requirement; the decision is not yet made; however, steps in the right direction are in motion. Fly a space-based coronagraph dedicated to operations SEC has requested again that NOAA step up to this requirement; as yet, the decision is not positive, but again, efforts are in motion. Principal SEC Goals through 2012

7 The need - Customers operating on continental and sub- continental scales are demanding regional specification and forecasts of space weather. NOAAs Space Weather Program FY2008 Program Baseline Assessment Program Baseline Assessment The Response - NASA, NSF, and DOD have expended tens of millions of dollars to develop models of the local and regional reaction of the space environment to forcing inputs from the Sun; many of these models are now mature and ready for transition to operations. The Problem - NOAAs Space Environment Center (SEC) has been unable to fund transitions of these critical models. Lack of resources constrains NOAAs ability to deliver what customers want. Space Weather Program constraint #1 – Regional space weather forecasts and the transition of models and related research into operations

8 Status of NOAAs efforts to get an operational solar wind monitor NOAA management have agreed that we need a solar wind monitor. Broad Area Announcement (BAA) issued in July 2005 for proposals. - Three of these proposals were selected in September 2005 and will be funded for a more detailed feasibility study ($100 – 300k). NOAA hope to have reliable estimates in 3-6 months. Commercial solution is an option. Funding is still an issue!!! So how do we convince the decision makers?

9 Total (estimated) Number of Space Weather Models Driven or Validated by ACE Solar Wind Data Solar wind driven models and operational products are expected to grow considerably in the next decade. ACE data directly drives five of the eleven SEC space weather watches and warnings, and influences the remaining six NOTE: The plot above does not include many of the research efforts underway that rely on solar wind data

10 Average Monthly NOAA/SEC Internet Traffic and Customer Summary Web Site: More than 30 million files transferred each month. »~500,000 files created monthly with near-real-time data for 176 products »more than 250,000 unique customers per month »customers from 150 countries NOAA/SEC has end-to-end system responsibility for universally used space environment data acquired by the GOES and POES environmental satellites. SEC also supplies real time solar wind data from the NASA ACE satellite. A million ACE solar wind files are downloaded from the SEC FTP server every month by nearly 25,000 unique customers SEC's public internet serves 4.8 million ACE RTSW data display files every month. All the above numbers reflect monthly usage near solar minimum!

11 The number of products above does not include the NOAA POES and GOES, or NASA ACE real time solar wind data sets, which account for over 14 million file transfers per month Over 400 event-driven products were issued during each of the solar minimum years (1996 & 1997) Annual Number of Space Weather Products Issued during Solar Cycle 23

12 Impact Area Geomagnetic and Radiation Storm Predictions Customer (examples)Action (examples)Cost (examples) Spacecraft (Individual systems to complete spacecraft failure; comm and radiation effects) Lockheed Martin, Orbital, Aerospace Corp, Boeing, Digital Globe, Sciences Corp, Space Systems Loral, NASA, NOAA, DoD - Postpone launch - In orbit - Reboot systems; Turn off/safe instruments and/or spacecraft Loss of s/c can exceed $500M Commercial loss exceeds $1B Worst case storm - $100B Electric Power (Equipment damage to electrical grid failure and blackout conditions) U.S. Nuclear Regulatory, Northeast Power Coordinating Council, Allegheny Power, Central Maine, American Transmission Company Many mitigating actions: - adjust/reduce system load - disconnect components, - postpone maintenance. -Estimated loss per year ~$400M from unexpected geomagnetic storms - $3-6B loss in GDP (blackout) Airlines (Communications) (Loss of flight HF radio communications) United, Continental, Northwest, American, Lufthansa, Qantas Virgin, British Airways, FedEx, Air New Zealand, ExecuJet, etc. Divert polar flights, change flight plans Change altitude Cost ~ $100k per diverted flight $10-50k for re-routes Airlines (Radiation) (Radiation dose on crew and passengers) United, Continental, Northwest, American, Lufthansa, Qantas Virgin, British Airways, FedEx, Air New Zealand, ExecuJet etc. Divert polar flights, change flight plans Change altitude (even at mid-latitudes) - Cost ~$100k per diverted flight - Health risks Surveying & Navigation (Use of magnetic field or GPS could be impacted) FAA-WAAS, New York and Texas Dept. of Transportation, BP Alaska, Schlumberger, GlobalSantaFe, etc. Postpone activities; Redo survey; Use alternate or backup navigation tools BP Alaska cost $10,000 per day, other surveys have similar costs Vendor Industry (Servicing the Northeast Power Coordinating Council (NPCC), and National Grid) Northwest Research Assoc., INC Solar Terrestrial Dispatch Metatech Corp. Data used in real time to alert electric power companies of significant geomagnetic storms Out of business without solar wind data! Solar Wind – Critical Input in NOAAs Space Weather Products

13 UPOS - University Partnering for Operational Support Solar Proton Penetration (into high-lat Ionosphere) Model Field Alligned Currents Radiation Belt Environment Geomagnetic Storm Forecast (Dst) Geomagnetic Storm Forecast (Kp) Real-time Interplanetary Shock Prediiction (RISP) System Prediction of Energetic Electron Flux at Geosync Orbit Real-time Upstream Monitoring System (RUMS) Active Region Helicity Injection Hakamada-Akasofu-Fry (HAF) Solar Wind Model Geomagnetic Storm Prediction Models DMI – Elman recurrent neural network Berkeley – Burton Model IRF-Lund – Lund neural network LASP Dst prediction GSFC/SWRI Dst Model Predict Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme Real-time UAF Eulerian Parallel Polar Ionosphere Model Global Assimilation of Ionospheric Measurements (GAIM) ISTP Magnetopause and Bowshock Dynamic Modeling IPS – Magnetopause Model ESA – Spacecraft Anomaly Analysis Prediction System (SAAPS) DMI – Geomagnetic Activity Forecast (GAFS) BGS – Solar Wind Monitoring and Induction Modeling for GIC Real-time Prediction of Auroral Electrojet Indices (GSFC) Prediction of high-lat geomag from ACE RTSW (GSFC – - 1999 Radiation Belt Electrons at Geosynchronous Orbit (LASP) LMSAL/VSL Solar Wind Model (validation) Lindsey CME Propagation Model Gopal CME Propagation Model Costello Kp Model Weimer Model REFM – Relativistic Electron Forecast Model STOA – Shock Time of Arrival Model ISPM – Interplanetary Shock Propagation Model EIE – Energetic Ion Enhancement CISM – Center for Integrated Space Weather Modeling 1 to 7-day prediction of the daily Ap 1-day prediction relativistic electron flux in the 2-9 MeV Wang Sheeley Arge Ambient Solar Wind FM Global Solar Wind Forecast Model Global Magnetospheric FM Geospace FM rtAMIE – Assimilative Mapping of Ionospheric Electrodynamics LiMIE – Linear Modeling of Ionospheric Electrodynamics Engineers Model for Solar Energetic particles in Interplanetary Space – (Barcelona- Lario) Metaech SpaceCast/Powercast geomag fcst System STD Prediction Service (Oler) Magnetic Specification and Forecast Model (USAF) A Sample of Models and Products driven or validated by Solar Wind Data

14 POES data Usage 5 million file transfers per month (web only) 10,000 unique users daily 30-40% of all NOAA/SEC customers use POES data Heavy ftp usage too! Again, these are current numbers (as we approach solar minimum) GOES data Usage Eight million GOES file transfers per month (web only) – 140,000 unique users monthly NOAA GOES and POES Usage

15 1996 200420002008 2012 2016 Extended Mission Nominal Mission SOHO/LASCO NASA STEREO No CME Detection Capability PPBES - It is proposed to fly a coronal mass ejection imager (CMEI) on GOES-R series. Coronagraph imagery is expected from NASAs SOHO and STEREO satellites until about 2011. Then, CME images will cease, as NASA has no plans to fly a replacement coronagraph. This need has been accepted as valid by the GOES-R project, as reflected in the GOES Mission Requirements Document (MRD) and Program Requirements Document (PRD). However, the CMEI has been deemed unaffordable by the GOES-R project. It is not manifested for flight on GOES-R, although it is listed as a high priority Pre Planned Product Improvement (P3I) if additional money becomes available. Status of NOAAs efforts to get an operational coronagraph

16 Aviation Support NOAA Scale Its been nasty …. The S3 (NOAA Scale) two days ago resulted in less optimum polar routings to Polar 4 rather than Polar 3, and lower flight levels. All this increases fuel requirements and reduced revenue payload. In addition, because of the effect on HF comms, we have abandoned polar today altogether. We must stop our Chicago to Hong Kong in Anchorage because no other routes provide non-stop capability. G. Cameron, Dispatcher, United Air Lines The January 20, 2005 Radiation Storm, once again, caused impacts: United Airlines identified space weather as the #1 concern during polar operations

17 The New York Comm Center reported : 07Sep 1800Z: Solar activity severely impacted all HFcomms. Higher frequencies utilized with little effect. 24 aircraft position reports and NYC ATC messages were relayed via sat-voice between 1040Z and 1939Z. Severe operational impact. The San Francisco/SFO Comm Center reported: 07Sep 1755Z: SFO sends ARINC Solar Flare Activity Advisory of moderate to severe impact to HF comms to airline customers. SFO experiencing extreme HF "white-out conditions virtually wiping out all Pacific HF. 11Sep 0050Z: Tokyo and Port Moresby Radio having difficulties, SFO will assist as needed. 13Sep 1930Z: Solar activity severely disrupting HF comms in all Pacific areas throughout daylight hours. Severe communication impact and severe operational/service impact. Major airlines rerouted flights away from the poles because of current and anticipated space weather conditions. This occurred several times during the September activity. These costly reroutes (~$100k) require an additional fuel stop and new crew. The September 2005 space weather also caused considerable impacts:

18 At the request of the commercial aviation community, SEC has hosted three workshops –April 2002 –February 2004 –April 2005 The outcomes have been: –a better educated user community –SECs better understanding of the plans and needs of the commercial aviation community –understanding of the plans for commercial vendors of services to the airlines –a path for SEC to provide appropriate products and services Aviation Support

19 GROWTH ON POLAR ROUTES The advent of new long range aircraft such as the A340-500/600, B777-300ER and B777-200LR Chinas aviation industry is developing at an explosive pace: On June 18, 2004, the US and China concluded a bilateral air services agreement, permitting a nearly 5 fold increase in weekly frequencies over the next 6 years. Airlines operating China-US routes go from 4 to 9 Number of weekly flights from 54 to 249 over the next 6 years. The Transportation Dept estimates the economic impact of the agreement at $12 billion in additional revenues for US carriers over seven years. - IATA Typical time savings in minutes and dollars per flight (2003) New York - Singapore 209 minutes $44,000 Vancouver - Hong Kong 125 minutes $33,000

20 Space Weather Aviation Webpage NOAA Scales Maximum in Currently past 24-hours Geomagnetic Storms minor none Solar Radiation Storms none none Radio Blackouts moderate moderate 24 Hour Forecast Space weather for the next 24 hours is expected to be extreme. Geomagnetic storms reaching the G5 level are expected. Solar radiation storms reaching the S3 level are expected. Radio blackouts reaching the R3 level are expected. Radio Blackout PlotPolar Plot TODAYSSPACEWEATHERTODAYSSPACEWEATHER Watches, Warnings, Alerts, and Summaries Issue Time: 2004 Feb 24 1713 UTC ALERT: X-Ray Flux exceeded M5 Threshold Reached: 2004 Feb 24 1712 UTC

21 New aviation product to help define HF degradation at high latitudes Product will be introduced in 2006

22 GOES-N launch, originally scheduled for May 2005, has been postponed several times and is now scheduled for a Feb 2006 launch. GOES-N features another Solar X-ray Imager (SXI) Improved Energetic Particle Sensor (EPS) - Protons 80 keV – 700 MeV (16 channels) - Electrons 30 keV – 4 MeV (8 channels) First-ever operational Extreme UltraViolet Sensor (EUVS) GOES-N Launch (sometime soon…we hope!) It will likely be some time (years) before GOES-N is turned on.

23 Links with Partners (examples) SEC can not succeed without its partners: Federal – NOAA, NASA, NSF, DoD, DoE, DoT (National Space Weather Program) International The 11 Regional Warning Centers (RWCs) of the International Space Environment Service (ISES) ESA Tracking stations for ACE Academic Commercial space weather service providers

24 Summary The need for space weather services is growing at a substantial rate. ACE, GOES, and POES data usage is growing steadily. Real time solar wind data is essential. Space weather services cannot meet customer expectations without these measurements. The aviation communitys need for space weather support will play a critical role in SECs future.

Download ppt "NOAA Space Environment Center Space Weather Activities Bill Murtagh NOAA Space Environment Center Boulder, Colorado European Space Weather Week ESTEC November."

Similar presentations

Ads by Google