Presentation is loading. Please wait.

Presentation is loading. Please wait.

Helsinki-3 Direct Estimate of Conjugation, Hyperconjugation and Aromaticity With an Energy Decomposition Analysis Gernot Frenking Fachbereich Chemie, Philipps-Universität.

Similar presentations


Presentation on theme: "Helsinki-3 Direct Estimate of Conjugation, Hyperconjugation and Aromaticity With an Energy Decomposition Analysis Gernot Frenking Fachbereich Chemie, Philipps-Universität."— Presentation transcript:

1 Helsinki-3 Direct Estimate of Conjugation, Hyperconjugation and Aromaticity With an Energy Decomposition Analysis Gernot Frenking Fachbereich Chemie, Philipps-Universität Marburg

2 Conjugation What is conjugation? “In a topological sense, the indication that each pair of multiple (double or triple) bonds in a polyunsaturated molecule is separated by one single bond.” Pure Appl. Chem. 1999, 71, 1919. IUPAC Definition :  -carotene, the red pigment in carrots and other vegetables “Conjugated compounds are usually more stable than bond-shifted isomers in which the double (triple) bonds are isolated from each other by more than on single one bond” (a) isolated double bonds (b) conjugated double bonds

3 Conjugation  Geometry  Reactivity  Properties Short C–C distance: 1.453 Å

4

5 Hyperconjugation What is hyperconjugation? It is the interaction between orbitals having  symmetry where at least one of the  orbitals is located at an atom that does not have a multiple bond  π  (sat) π (sat)  π  (sat)  π  ←  π  (sat) π (sat)  ←  π  (sat)

6

7 Energy Decomposition Analysis (EDA)Extended Transition State Method (ETS) K. Morokuma, J. Chem. Phys. 1971, 55, 1236T. Ziegler, A. Rauk, Theor. Chim Acta 1977, 46, 1 A + B A-B  (A) +  (B) [  (A) +  (B)](r A-B )  E elstat  (A,B)   =NÂ  (A,B)  E Pauli NÂ   (A,B)  (A-B)  E Orb 1. 2. 3. 1. + 2. + 3. =  E int  E int +  E prep =  E(BDE) Three Steps:  (A-B)   (A-B) 

8 D. Cappel, S, Tüllmann, A. Krapp, F. Frenking, Angew. Chem. Int. Ed. 2005, 117, 3683.

9 Conjugation BP86/TZ2P. Energy Values in kcal/mol

10 Conjugation BP86/TZ2P. Energy Values in kcal/mol

11 Conjugation BP86/TZ2P. Energy Values in kcal/mol

12 Conjugation BP86/TZ2P. Energy Values in kcal/mol

13 Conjugation BP86/TZ2P. Energy Values in kcal/mol

14 Conjugation BP86/TZ2P. Energy Values in kcal/mol

15 Conjugation

16 BP86/TZ2P. Energy Values in kcal/mol r = 0.95, SD=2.60 r = 0.97, SD=2.15

17 Conjugation BP86/TZ2P. Energy Values in kcal/mol r = 0.98, SD=2.92

18 Conjugation in Cyanoethynylethenes, CEEs, (Diederich) Conjugation in Cyanoethynylethenes, CEEs, (Diederich) r = 0.99, SD= 0.43 BP86/TZ2P. Energy Values in kcal/mol o C ipso o C meta 1 7 r = 0.98, SD= 0.62

19 r = 0.99, SD= 0.36 Calculated quinoid character:  r = (((c + c’)/2 – (b + b’)/2) + ((a + a’)/2 – (b + b’)/2))/2. I. Fernández, G. Frenking, Chem. Commun. 2006, 5030.

20 Hyperconjugation H 2 C=CH–CX 3 HC ≡ C–CX 3 BP86/TZ2P. Energy Values in kcal/mol  (H 2 C=CH)→  *(CX 3 )  *(H 2 C=CH)←  (CX 3 )  (H 2 C≡CH)→  *(CX 3 )  *(H 2 C≡CH)←  (CX 3 ) No clear correlation between hyperconjugation and C–C bond distances

21 Hyperconjugation BP86/TZ2P. Energy Values in kcal/mol

22 Hyperconjugation r = 0.97, SD= 0.29

23 Hyperconjugation BP86/TZ2P. Energy Values in kcal/mol X 3 C–CY 3

24 Hyperconjugation BP86/TZ2P. Energy Values in kcal/mol X 3 C–CY 3 (  * deleted) blue:  (X 3 C) →  *(CY 3 ) red:  * (X 3 C) ←  CY 3 ) black: total hyperconj the relative  donor strengths of two groups may be inverted depending on the acceptor moiety C–H > C–C C–C > C–H

25

26

27

28

29

30

31 D.L. Thorn, R. Hoffmann, Nouv. J. Chim. 1979, 3, 39.

32

33 I. Fernandez, G. Frenking, Chem. Eur. J., 2007, 13, 5873.

34

35

36 Conjugation and Hyperconjugation CONCLUSIONS  The calculated  E  values taken from the EDA can be used to estimate the strength of the relative contributions of  interactions that come from conjugation/hyperconjugation  The EDA method has a predictive value. The trend of the calculated  E  values is in very good agreement with NMR chemical shifts and experimentally derived Hammett constants.  The comparison of  E  values of cyclic system with a suitable reference compound makes it possible to estimate the stabilization due to aromaticity.  Bond energies and lengths should not be used as indicators of the strength of hyperconjugation because the effect of  interactions and electrostatic forces may compensate for the hyperconjugative effect.

37

38

39

40

41

42

43

44 D. Cappel, S, Tüllmann, A. Krapp, F. Frenking, Angew. Chem. Int. Ed. 2005, 117, 3683.

45 Conjugation BP86/TZ2P. Energy Values in kcal/mol r = 0.95, SD=2.60 r = 0.97, SD=2.15 I. Fernández, G. Frenking, J. Org. Chem. 2006, 71, 2251.

46 Conjugation in Cyanoethynylethenes, CEEs, (Diederich) Conjugation in Cyanoethynylethenes, CEEs, (Diederich) r = 0.99, SD= 0.43 BP86/TZ2P. Energy Values in kcal/mol o C ipso o C meta 1 7 r = 0.98, SD= 0.62 I. Fernández, G. Frenking, Chem. Commun. 2006, 5030

47

48 I, Fernández, G. Frenking, Faraday Discuss., 2007, 135, 403

49 I. Fernández, G. Frenking, Chem. Eur. J., in print.

50


Download ppt "Helsinki-3 Direct Estimate of Conjugation, Hyperconjugation and Aromaticity With an Energy Decomposition Analysis Gernot Frenking Fachbereich Chemie, Philipps-Universität."

Similar presentations


Ads by Google