Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physical Layer II: Framing, SONET, SDH, etc. CS 4251: Computer Networking II Nick Feamster Spring 2008.

There are copies: 1
Physical Layer II: Framing, SONET, SDH, etc. CS 4251: Computer Networking II Nick Feamster Spring 2008.

Similar presentations

Presentation on theme: "Physical Layer II: Framing, SONET, SDH, etc. CS 4251: Computer Networking II Nick Feamster Spring 2008."— Presentation transcript:

1 Physical Layer II: Framing, SONET, SDH, etc. CS 4251: Computer Networking II Nick Feamster Spring 2008

2 From Signals to Packets Analog Signal Digital Signal Bit Stream Packets Header/Body ReceiverSender Packet Transmission

3 Analog versus Digital Encoding Digital transmissions. –Interpret the signal as a series of 1s and 0s –E.g. data transmission over the Internet Analog transmission –Do not interpret the contents –E.g broadcast radio Why digital transmission?

4 Why Do We Need Encoding? Meet certain electrical constraints. –Receiver needs enough transitions to keep track of the transmit clock –Avoid receiver saturation Create control symbols, besides regular data symbols. –E.g. start or end of frame, escape,... Error detection or error corrections. –Some codes are illegal so receiver can detect certain classes of errors –Minor errors can be corrected by having multiple adjacent signals mapped to the same data symbol Encoding can be very complex, e.g. wireless.

5 Encoding Use two discrete signals, high and low, to encode 0 and 1. Transmission is synchronous, i.e., a clock is used to sample the signal. –In general, the duration of one bit is equal to one or two clock ticks –Receivers clock must be synchronized with the senders clock Encoding can be done one bit at a time or in blocks of, e.g., 4 or 8 bits.

6 Nonreturn to Zero (NRZ) Level: A positive constant voltage represents one binary value, and a negative contant voltage represents the other Disadvantages: –In the presence of noise, may be difficult to distinguish binary values –Synchronization may be an issue

7 Non-Return to Zero (NRZ) 1 -> high signal; 0 -> low signal Long sequences of 1s or 0s can cause problems: –Sensitive to clock skew, i.e. hard to recover clock –Difficult to interpret 0s and 1s V

8 Improvement: Differential Encoding Example: Nonreturn to Zero Inverted –Zero: No transition at the beginning of an interval –One: Transition at the beginning of an interval Advantage –Since bits are represented by transitions, may be more resistant to noise Disadvantage –Clocking still requires time synchronization

9 Non-Return to Zero Inverted (NRZI) 1 -> make transition; 0 -> signal stays the same Solves the problem for long sequences of 1s, but not for 0s. V

10 Biphase Encoding Transition in the middle of the bit period –Transition serves two purposes Clocking mechanism Data Example: Manchester encoding –One represented as low to high transition –Zero represented as high to low transition

11 Aspects of Biphase Encoding Advantages –Synchronization: Receiver can synchronize on the predictable transition in each bit-time –No DC component –Easier error detection Disadvantage –As many as two transitions per bit-time Modulation rate is twice that of other schemes Requires additional bandwidth

12 Ethernet Manchester Encoding Positive transition for 0, negative for 1 Transition every cycle communicates clock (but need 2 transition times per bit) DC balance has good electrical properties V s

13 Digital Data, Analog Signals Example: Transmitting digital data over the public telephone network Amplitude Shift Keying Frequency Shift Keying Phase Shift Keying

14 Amplitude-Shift Keying One binary digit represented by presence of carrier, at constant amplitude Other binary digit represented by absence of carrier where the carrier signal is Acos(2πf c


16 Amplitude-Shift Keying Used to transmit digital data over optical fiber Susceptible to sudden gain changes Inefficient modulation technique for data

17 Binary Frequency-Shift Keying (BFSK) Two binary digits represented by two different frequencies near the carrier frequency f 1 and f 2 are offset from carrier frequency f c by equal but opposite amounts Less susceptible to error than ASK On voice-grade lines, used up to 1200bps Used for high-frequency (3 to 30 MHz) radio transmission Can be used at higher frequencies on LANs w/coaxial cable

18 Multiple Frequency-Shift Keying More than two frequencies are used More bandwidth efficient but more susceptible to error f i = f c + (2i – 1 – M)f d f c = the carrier frequency f d = the difference frequency M = number of different signal elements = 2 L L = number of bits per signal element

19 Phase-Shift Keying (PSK) Two-level PSK (BPSK) –Uses two phases to represent binary digits

20 Modulation: Supporting Multiple Channels Multiple channels can coexist if they transmit at a different frequency, or at a different time, or in a different part of the space. Space can be limited using wires or using transmit power of wireless transmitters. Frequency multiplexing means that different users use a different part of the spectrum. Controlling time is a datalink protocol issue. –Media Access Control (MAC): who gets to send when?

21 Time Division Multiplexing Users use the wire at different points in time. Aggregate bandwidth also requires more spectrum. Frequency

22 Plesiosynchronous Digital Hierarchy (PDH) Infrastructure based on phone network –Spoken word not intelligible above 3400 Hz –Nyquist: 8000 samples per second –256 quantization levels (8 bits) –Hence, each voice call is 64Kbps data stream Almost synchronous: Individual streams are clocked at slightly different rates –Stuff bits at the beginning of each frame allow for clock alignment (more complicated schemes called B8ZS, HDB3)

23 Points in the Hierarchy: TDM DS064 DS11,544 DS344,736 LevelData Rate

24 TDM: Moving up the Hierarchy Additional bits are stuffed into frames to allow for clock alignment at the start of every frame In North America, a DS0 data link is provisioned at 56 Kbps. Elsewhere, it is 64 Kbps. Circuits can be provided in composite bundles

25 Synchronous Digital Hierarchy (SDH) Tightly synchronized clocks remove the need for any complicated demultiplexing Typically allows for higher data rates –OC3: Mbps –OC12: Mbps –…

26 Baseband versus Carrier Modulation Baseband modulation: send the bare signal. Carrier modulation: use the signal to modulate a higher frequency signal (carrier). –Can be viewed as the product of the two signals –Corresponds to a shift in the frequency domain Same idea applies to frequency and phase modulation. –E.g. change frequency of the carrier instead of its amplitude

27 Amplitude Carrier Modulation Amplitude Signal Carrier Frequency Amplitude Modulated Carrier

28 Frequency Division Multiplexing: Multiple Channels Amplitude Different Carrier Frequencies Determines Bandwidth of Channel Determines Bandwidth of Link

29 Frequency vs. Time-division Multiplexing With frequency-division multiplexing different users use different parts of the frequency spectrum. –I.e. each user can send all the time at reduced rate –Example: roommates With time-division multiplexing different users send at different times. –I.e. each user can sent at full speed some of the time –Example: a time-share condo The two solutions can be combined Frequency Time Frequency Bands Slot Frame

30 Wavelength-Division Multiplexing Send multiple wavelengths through the same fiber. –Multiplex and demultiplex the optical signal on the fiber Each wavelength represents an optical carrier that can carry a separate signal. –E.g., 16 colors of 2.4 Gbit/second Like radio, but optical and much faster Optical Splitter Frequency

Download ppt "Physical Layer II: Framing, SONET, SDH, etc. CS 4251: Computer Networking II Nick Feamster Spring 2008."

Similar presentations

Ads by Google