Presentation is loading. Please wait.

Presentation is loading. Please wait.

26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB20081 HEBT Diagnostics for Commissioning, Control and Characterization of the IFMIF-EVEDA Accelerator.

Similar presentations


Presentation on theme: "26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB20081 HEBT Diagnostics for Commissioning, Control and Characterization of the IFMIF-EVEDA Accelerator."— Presentation transcript:

1 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB20081 HEBT Diagnostics for Commissioning, Control and Characterization of the IFMIF-EVEDA Accelerator PY. Beauvais 2, B. Brañas 1, J.M. Carmona 1, N. Chauvin 2, A. Ibarra 1, J. Marroncle 2, A. Mosnier 2, C. Oliver 1, I. Podadera 1 1 CIEMAT 2 CEA-Saclay

2 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB20082 IFMIF Goals C haracterization of materials envisaged for future fusion reactors. S tudy and analysis of the behaviour of materials under a high flux of neutrons (10 18 n/m 2 /s). P. Garin, IFMIF: status and developments, EPAC08, p. 974 (2008) International Fusion Materials Irradiation Facility

3 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB20083 IFMIF design P. Garin, IFMIF: status and developments, EPAC08, p. 974 (2008) Neutron flux density Beam footprint at interaction point Accelerator Target Irradiation module Heat extraction by fast liquid Li D+D+ Li flux Samples neutrons ~10 17 n/s 2 acc. In parallel EM bomb Heat exchanger Deuterons: 40 MeV 250 mA ( 10 MW ) 20-50 dpa/y in 0.5 l T: 250<T<1000 ℃ Facility availability >70% 20 cm 5 cm

4 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB20084 IFMIF Accelerator RF Power System 175 MHz High Energy Beam Transport (HEBT) Large Bore Quad & Dipoles Superconducting HWR CW 175 MHz, HWR, 4 cryomodules, 40MeV Radio Frequency Quadrupole (RFQ) CW 175 MHz, water cooled, 5 MeV Ion Injector CW ECR, Source, 140 mA D +, 95 keV, Magnetic LEBT to RFQ EVEDA Deuterons, 2 x 125 mA, CW, 40 MeV. Target region: 20 cm horizontal x 5 cm vertical. Accelerator challenges Space charge. Beam instabilities. CW operation. Beam interception (activation). Shape of the beam footprint at the target. Accelerator challenges Space charge. Beam instabilities. CW operation. Beam interception (activation). Shape of the beam footprint at the target.

5 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB20085 EVEDA phase Engineering Validation and Engineering Design of the IFMIF project IFMIF-EVEDA Accelerator Goals to validate the technical options with the construction of a prototype accelerator. to produce the detailed integrated design of the future IFMIF accelerator. Main specifications Installation in Rokkasho-Japan 2012-2013. manufacturing and tests of a prototype accelerator (1:1) with 9 MeV final energy. Deuterons, 125 mA cw, 9 MeV. Commissioning phase: 0.5 mA-125 mA, pulsed mode down to 200 ms, 0.1% duty cycle. A. Mosnier, A. Ibarra, A. Facco, The IFMIF- EVEDA accelerator activities, EPAC08, p. 3539 (2008)

6 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB20086 IFMIF-EVEDA Accelerator Mockup courtesy of T. Trublet Ion especiesD + /H 2 + (tests) CW current (min/max)0.5/125 mA RFQ output energy5 MeV (β=0.0727) HWR output energy9 MeV (β=0.0975) RF frequency175 MHz Bunch width (min/max)0.1-3 ns Duty factor (min/max)0.1%/CW Pulse length (min/max) ~100  s/CW Beam power1.125 MW

7 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB20087 IFMIF-EVEDA Accelerator Ion sourceLEBTRFQMSHWRDP+HEBT BD 5 MeV for RFQ comissioning: From 0.5 mA to 125 mA. Pulsed and CW operation. 9 MeV for HWR commissioning and beam characterization : From 0.5 to 125 mA. Pulsed and CW operation. ECRIS Pulse characteristics T b ~ 1000·t p trtr tptp tftf t r >10-20 us t f >45  s t p >100  s (200 us for stabilization) DC=0.1% T b > 0.1 s Commissioning

8 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB20088 HEBT beam diagnostics BLM BP BLM Q8 Q9 BLM Q5 Q6Q7 Diagnostics plate HWR01 Q1 0 Q1 1 Q1 2 BD D1 RFQ HWR D1 BD ECR+LEBT DP MS 3 m1 m 0.5 m 1 m 4 m BLM Shielding IFMIF Profilers prototypes 1 m 1.5 m Characterization diagnostics: Diagnostics Plate+spectrometer. Beam Dump control: Halo, BLM’s position and transverse profile to control losses and power density profile on the cone (~200 kW/cm 2 ). Beam Losses: BLM’s + DCCT and BPM’s transmission monitoring. Spectrometer: beam characterization (profilers), reduction radiation impact on the accelerator, controlled with BPM’s, DCCT’s transmission and BLM’s.

9 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB20089 High Energy Beam Transport Line (HEBT) HWR Beam dump Magnetic dipole (spectrometer) rms beam envelope along the HEBT (from HWR up to Beam Dump) C. Oliver et al., HEBT for the IFMIF-EVEDA accelerator, EPAC’08, p. 3041 (2008) BPM5 BPM6 TPM3 TPM-IFMIF TPM2 TPM1 QT1 QD2 QT3 BPM4 Diagnostics plate SHM2 Beam dynamics draft DCCT2 DCCT4 DCCT3

10 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200810 HEBT diagnostics ParameterMethodComments EVEDA 1AC currentACCT 2DC currentDCCT 3PositionStripline BPM 4Transverse ProfileGas fluorescence (FPM) Gas ionization (BTPM) 5Longitudinal Bunch ShapeFCT,… 6Bunch lengthBPM Frequency spectrumOr FCT,… 7Beam LossesTBDPlastic scintillators, fission chambers... 8Transverse HaloMetallic rings / scrapers 9Mean energyTOF with BPMOr dedicated capacitive rings 10Transverse emittanceQuadrupole scanSpace charge and beam losses limitation 11Longitudinal emittanceBuncher scanSpace charge/ beam losses/ monitor limitation 12Energy spreadSpectrometer IFMIF 13IFMIF target transverse square profile Gas ionizationBig beam pipe aperture/ image borders 14Gas fluorescenceBig beam pipe aperture/ image borders Essential for initial commissioning (HB2006): Current Position Profile

11 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200811 Diagnostics Plate I. Podadera et al., EPAC’08, p. 1248 (2008) BPM1 BPM2 BPM3 FPM1 BTPM1 SHM1 DCCT1 ACCT1 Characterization of each important beam parameter for validation of the accelerator and commissioning of the RFQ and the HWR cavities Challenges Low β Debunching Radiation damage draft Parameters DC current AC noise Centroid jitter Transverse profile (size and distribution) Halo Mean energy Bunch width

12 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200812 Low-  image current Beam current Image current 100 mm 150 mm BPM1 BPM6 The fundamental harmonic is reduced almost 5 times from the beginning to the end of the line. The higher harmonics dissapear…

13 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200813 Stripline Beam Position Monitors Example for β=0.4 Shorted stripline Beam Position Monitors along the HEBT (x6). β =1 approximation not longer valid (Shafer criteria) 1 Use for beam position measurement (probably at the fundamental harmonic due to the low signal at higher harmonics). Time of flight measurement (better accuracy than capacitive pick-up for offset beams) 2. Bunch width measurements at DP using higher harmonics. EM simulations 1 R. Shafer, AIP BIW'93,319, p. 303 (1994) 2 S. Kurennoy, On Beam Phase Detectors for SNS LINAC, SNS 99-65 (1999). Energy: 5/9 MeV Position resolution: 10  m Absolute precision: 100  m Dynamic range: 0.5 mA- 150 mA Position range: ± 30% aperture. Linearity error: ±1%. Phase accuracy: 1º-2º. Phase resolution: 0.1º. Energy: 5/9 MeV Position resolution: 10  m Absolute precision: 100  m Dynamic range: 0.5 mA- 150 mA Position range: ± 30% aperture. Linearity error: ±1%. Phase accuracy: 1º-2º. Phase resolution: 0.1º.

14 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200814 Stripline Beam Position Monitors Four-strip geometry optimization C. Deibele, Matching BPM stripline electrodes to cables and electronics, PAC’2005, p. 2607 (2005). Optimization of the geometry parameters using the matching of the four strips with the electronics. Optimum for 175 MHz narrowband measurement 78 mm Length optimization

15 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200815 MPS and thermal shock melting stress Formula for evaluation maximum heat density: 2 According to the models, at SNS and J-PARC LINACs, the whole pulse injection would not be allowed. 1,2 IFMIF accelerator stop limit (CDR): 10 μs 1 R. E. Shafer, Internal documentation, SNS, 2001. 2 H. TAKEI and H. KOBAYASHI, J. Nucl. Sci. and Tech., 42, 12, p.1032-1039, 2005. Maximum time before failure for 90º total beam impact:: 1 Time limits for different materials for IFMIF But a 90º beam impact in the vacuum pipe is not realistic under normal operation conditions…

16 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200816 Transverse Profile Two non-interceptive methods based on interaction between gas in the chamber and deuteron beam are under design and will be installed at IFMIF-EVEDA. Fluorescence (FPM) (CIEMAT development) Ionization (BTPM) (CEA-Saclay development) J. Marroncle et al., proceedings BIW’08, 2008 First experiments carried in Saclay with protons at 95 keV, 100 mA Detector : microstrips, grid, resistors for a uniform electric field… Detector mounted on its flange Detector assembly in the vacuum pipe Preliminary calculations: 10 10 photon/s at 9 MeV, 125 mA Energy: 5/9 MeV Aperture: 100/150/200 mm. Dynamic range: ±3σ. Accuracy: 250  m, 5  A. Rms precision: 100  m, 2  A. Frequency bandwidth: 10 Hz. Energy: 5/9 MeV Aperture: 100/150/200 mm. Dynamic range: ±3σ. Accuracy: 250  m, 5  A. Rms precision: 100  m, 2  A. Frequency bandwidth: 10 Hz.

17 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200817 IFMIF profiler Beam footprint at interaction point Key device for operation of the IFMIF accelerator. Control the overlap between both accelerators and the flat transverse profile. Several techniques have been already analyzed. 1 IFMIF profilers will be tested near the BD region at IFMIF-EVEDA (high neutron flux). 1 E. Surrey et al., A beam profile monitor for IFMIF reference, EFDA TW5-TTMI-001 (2006) 20 cm 5 cm

18 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200818 Transverse emittance C. Oliver et al., HEBT for the IFMIF-EVEDA accelerator, EPAC’08, p. 3041 (2008) Quadrupole scan in a free dispersion region (before spectrometer). Resolution affected by space charge (non-linear optics). Compromise between maximum size (beam losses) and minimum size (halo creation).

19 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200819 Conclusions HEBT diagnostics will have to permit the safe transport of the IFMIF-EVEDA high-intensity deuteron beam from the HWR up to the beam dump. The beam will be fully characterized with a movable diagnostics plate and a spectrometer. Low beam energy and high intensity precludes the use of any interceptive diagnostics. The instrumentation placed near the BD will receive high radiation, it will be a good place to test the future IFMIF profiler. Electromagnetic pick-ups are challenging due to the low beta effect, the debunching process and the relatively high beam pipe diameter. An intensive R&D programme about the use of non-interceptive gas diagnostics (fluorescence & ionization) to monitor the transverse profile has started and its success is almost mandatory for the accelerator operation. Due to the high intensity, non-linear space charge forces make difficult the implementation of non-interceptive methods for the measurement of emittances and energy spread.

20 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200820 We want to thank the support and help of all the ASG Thanks for your attention!!!

21 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200821 BL M BP 150 112 40 200 150 400100 200Min. 1000 DP preliminary configuration BL M All distances in mm Stripline BPM3 ACCT1 DCCT1 Fluorescence Transverse Profiler1 Ionization Transverse Profiler1 Segmented ring Halo monitor1 Beam Loss MonitorsTBD Others (buncher, BSM, capacitive ring...)TBD

22 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200822 Mean energy Measurements: Mean longitudinal energy Energy: 5/9 MeV Dynamic range: ± 20 % nominal E Accuracy: ± 0.2 % nominal E Rms precision: ± 0.01 % nominal E Frequency bandwidth: 200 kHz Measurements: Mean longitudinal energy Energy: 5/9 MeV Dynamic range: ± 20 % nominal E Accuracy: ± 0.2 % nominal E Rms precision: ± 0.01 % nominal E Frequency bandwidth: 200 kHz

23 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200823 Spectrometer Energy resolution obtained with a profiler resolution of 100 μm E (MeV) ΔE (keV) ββ+ Δβ max Φ (º) Bρ (T·m) B (T) x out (mm) (ΔE) res (keV) (ΔE) res /E 0 (%) 51000.07280.0735200.4580.2294.612.710.04 9500.09750.0977200.6140.3071.293.880.04 Protecting accelerator sensitive devices of neutron backscattering from the Beam Dump. Use for energy spread measurements Minimum 0.6% after the spectrometer Analysis using Tracewin

24 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200824 Halo Limit beam losses to 1 W/m (100 nA/m @ 9 MeV) along the accelerator For halo characterization due to beam mismatching and machine protection Preliminary idea: segmented ring Measurements: Halo and machine interlock. Energy: 5/9 MeV Aperture: 100/200 mm Accuracy: > 100 pA. Rms precision: 10 pA. Frequency bandwidth: 0.5 Hz Measurements: Halo and machine interlock. Energy: 5/9 MeV Aperture: 100/200 mm Accuracy: > 100 pA. Rms precision: 10 pA. Frequency bandwidth: 0.5 Hz

25 26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB200825 Beam loss monitors Measurements: beam losses, transmission and machine protection. Energy: from 5 to 9 MeV Dynamic range: 10 4 ÷1. Accuracy: few  A. Rms precision: ~50 pA. Frequency bandwidth: >5 Hz. Reaction time <10 μs. Azimuthally distributed around the beam pipe for beam position and halo monitoring. Main candidates Plastic scintillators (>7-8 MeV) Microfission chambers


Download ppt "26-8-2008I. Podadera- IFMIF-EVEDA HEBT diagnostics- HB20081 HEBT Diagnostics for Commissioning, Control and Characterization of the IFMIF-EVEDA Accelerator."

Similar presentations


Ads by Google