Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter Menu The Structure of the Atom Section 4.1Section 4.1Early Ideas About Matter Section 4.2Section 4.2 Defining the Atom Section 4.3Section 4.3.

Similar presentations


Presentation on theme: "Chapter Menu The Structure of the Atom Section 4.1Section 4.1Early Ideas About Matter Section 4.2Section 4.2 Defining the Atom Section 4.3Section 4.3."— Presentation transcript:

1

2

3 Chapter Menu The Structure of the Atom Section 4.1Section 4.1Early Ideas About Matter Section 4.2Section 4.2 Defining the Atom Section 4.3Section 4.3 How Atoms Differ Section 4.4Section 4.4 Unstable Nuclei and Radioactive Decay Exit Click a hyperlink or folder tab to view the corresponding slides.

4 Section 4-1 Section 4.1 Early Ideas About Matter Compare and contrast the atomic models of Democritus, Aristotle, and Dalton. theory: an explanation supported by many experiments; is still subject to new experimental data, can be modified, and is considered successful if it can be used to make predictions that are true Understand how Dalton's theory explains the conservation of mass.

5 Section 4-1 Section 4.1 Early Ideas About Matter (cont.) Dalton's atomic theory The ancient Greeks tried to explain matter, but the scientific study of the atom began with John Dalton in the early 1800's.

6 Section 4-1 Greek Philosophers (cont.) Many ancient scholars believed matter was composed of such things as earth, water, air, and fire. Many believed matter could be endlessly divided into smaller and smaller pieces.

7 Section 4-1 Greek Philosophers (cont.) Democritus (460–370 B.C. ) was the first person to propose the idea that matter was not infinitely divisible, but made up of individual particles called atomos. Aristotle (484–322 B.C. ) disagreed with Democritus because he did not believe empty space could exist. Aristotle’s views went unchallenged for 2,000 years until science developed methods to test the validity of his ideas.

8 Section 4-1 Greek Philosophers (cont.)

9 Section 4-1 Greek Philosophers (cont.) John Dalton revived the idea of the atom in the early 1800s based on numerous chemical reactions. Dalton’s atomic theory easily explained conservation of mass in a reaction as the result of the combination, separation, or rearrangement of atoms.Dalton’s atomic theory

10 Section 4-1 Greek Philosophers (cont.)

11 A.A B.B C.C D.D Section 4-1 Section 4.1 Assessment Who was the first person to propose the idea that matter was not infinitely divisible? A.Aristotle B.Plato C.Dalton D.Democritus

12 A.A B.B C.C D.D Section 4-1 Section 4.1 Assessment Dalton’s theory also conveniently explained what? A.the electron B.the nucleus C.law of conservation of mass D.law of Democritus

13 End of Section 4-1

14 Section 4-2 Section 4.2 Defining the Atom Define atom. model: a visual, verbal, and/or mathematical explanation of data collected from many experiments Distinguish between the subatomic particles in terms of relative charge and mass. Describe the structure of the atom, including the locations of the subatomic particles.

15 Section 4-2 Section 4.2 Defining the Atom (cont.) atom cathode ray electron nucleus proton neutron An atom is made of a nucleus containing protons and neutrons; electrons move around the nucleus.

16 Section 4-2 The Atom The smallest particle of an element that retains the properties of the element is called an atom.atom An instrument called the scanning tunneling microscope (STM) allows individual atoms to be seen.

17 Section 4-2 The Electron When an electric charge is applied, a ray of radiation travels from the cathode to the anode, called a cathode ray.cathode ray Cathode rays are a stream of particles carrying a negative charge. The particles carrying a negative charge are known as electrons.electrons

18 Section 4-2 The Electron (cont.) This figure shows a typical cathode ray tube.

19 Section 4-2 The Electron (cont.) J.J. Thomson measured the effects of both magnetic and electric fields on the cathode ray to determine the charge-to-mass ratio of a charged particle, then compared it to known values. The mass of the charged particle was much less than a hydrogen atom, then the lightest known atom. Thomson received the Nobel Prize in 1906 for identifying the first subatomic particle—the electron

20 Section 4-2 The Electron (cont.) In the early 1910s, Robert Millikan used the oil-drop apparatus shown below to determine the charge of an electron.

21 Section 4-2 The Electron (cont.) Charges change in discrete amounts— 1.602  10 –19 coulombs, the charge of one electron (now equated to a single unit, 1–). With the electron’s charge and charge-to-mass ratio known, Millikan calculated the mass of a single electron. the mass of a hydrogen atom

22 Section 4-2 The Electron (cont.) Matter is neutral. J.J. Thomson's plum pudding model of the atom states that the atom is a uniform, positively charged sphere containing electrons.

23 Section 4-2 The Nucleus In 1911, Ernest Rutherford studied how positively charged alpha particles interacted with solid matter. By aiming the particles at a thin sheet of gold foil, Rutherford expected the paths of the alpha particles to be only slightly altered by a collision with an electron.

24 Section 4-2 The Nucleus (cont.) Although most of the alpha particles went through the gold foil, a few of them bounced back, some at large angles.

25 Section 4-2 The Nucleus (cont.) Rutherford concluded that atoms are mostly empty space. Almost all of the atom's positive charge and almost all of its mass is contained in a dense region in the center of the atom called the nucleus. nucleus Electrons are held within the atom by their attraction to the positively charged nucleus.

26 Section 4-2 The Nucleus (cont.) The repulsive force between the positively charged nucleus and positive alpha particles caused the deflections.

27 Section 4-2 The Nucleus (cont.) Rutherford refined the model to include positively charged particles in the nucleus called protons.protons James Chadwick received the Nobel Prize in 1935 for discovering the existence of neutrons, neutral particles in the nucleus which accounts for the remainder of an atom’s mass. neutrons

28 Next- Niels Bohr When: 1913 Where: England What: Proposed that electrons traveled in fixed paths around the nucleus. Scientists still use the Bohr model to show the number of electrons in each orbit around the nucleus. Why: Bohr was trying to show why the negative electrons were not sucked into the nucleus of the atom.

29 Current model- Electron Cloud Model- Electrons travel around the nucleus in random orbits. Scientists cannot predict where they will be at any given moment. Electrons travel so fast, they appear to form a “cloud” around the nucleus.

30

31 Subatomi c particle LocationChargeMass ElectronShells/ orbits O ProtonInside nucleus +11 amu NeutronInside nucleus 0 (neutral) 1 amu

32 Section 4-2 The Nucleus (cont.) All atoms are made of three fundamental subatomic particles: the electron, the proton, and the neutron. Atoms are spherically shaped. Atoms are mostly empty space, and electrons travel around the nucleus held by an attraction to the positively charged nucleus.

33 Section 4-2 The Nucleus (cont.) Scientists have determined that protons and neutrons are composed of subatomic particles called quarks.

34 Section 4-2 The Nucleus (cont.) Chemical behavior can be explained by considering only an atom's electrons.

35 A.A B.B C.C D.D Section 4-2 Section 4.2 Assessment Atoms are mostly ____. A.positive B.negative C.solid spheres D.empty space

36 A.A B.B C.C D.D Section 4-2 Section 4.2 Assessment What are the two fundamental subatomic particles found in the nucleus? A.proton and electron B.proton and neutron C.neutron and electron D.neutron and positron

37 End of Section 4-2

38 Section 4-3 Section 4.3 How Atoms Differ Explain the role of atomic number in determining the identity of an atom. Define an isotope. Explain why atomic masses are not whole numbers. Calculate the number of electrons, protons, and neutrons in an atom given its mass number and atomic number.

39 Section 4-3 Section 4.3 How Atoms Differ (cont.) atomic number isotopes mass number The number of protons and the mass number define the type of atom. periodic table: a chart that organizes all known elements into a grid of horizontal rows (periods) and vertical columns (groups or families) arranged by increasing atomic number atomic mass unit (amu) atomic mass

40 Section 4-3 Atomic Number Each element contains a unique positive charge in their nucleus. The number of protons in the nucleus of an atom identifies the element and is known as the element’s atomic number.atomic number

41 Section 4-3 Isotopes and Mass Number All atoms of a particular element have the same number of protons and electrons but the number of neutrons in the nucleus can differ. Atoms with the same number of protons but different numbers of neutrons are called isotopes. isotopes

42 Section 4-3 Isotopes and Mass Number (cont.) The relative abundance of each isotope is usually constant. Isotopes containing more neutrons have a greater mass. Isotopes have the same chemical behavior. The mass number is the sum of the protons and neutrons in the nucleus.mass number

43 Section 4-3 Isotopes and Mass Number (cont.)

44 Section 4-3 Mass of Atoms One atomic mass unit (amu) is defined as 1/12 th the mass of a carbon-12 atom.atomic mass unit One amu is nearly, but not exactly, equal to one proton and one neutron.

45 Section 4-3 Mass of Atoms (cont.) The atomic mass of an element is the weighted average mass of the isotopes of that element.atomic mass

46 A.A B.B C.C D.D Section 4-3 Section 4.3 Assessment An unknown element has 19 protons, 19 electrons, and 3 isotopes with 20, 21 and 22 neutrons. What is the element’s atomic number? A.38 B.40 C.19 D.unable to determine

47 A.A B.B C.C D.D Section 4-3 Section 4.3 Assessment Elements with the same number of protons and differing numbers of neutrons are known as what? A.isotopes B.radioactive C.abundant D.ions

48 End of Section 4-3

49 Section 4-4 Section 4.4 Unstable Nuclei and Radioactive Decay Explain the relationship between unstable nuclei and radioactive decay. element: a pure substance that cannot be broken down into simpler substances by physical or chemical means Characterize alpha, beta, and gamma radiation in terms of mass and charge.

50 Section 4-4 Section 4.4 Unstable Nuclei and Radioactive Decay (cont.) radioactivity radiation nuclear reaction radioactive decay alpha radiation Unstable atoms emit radiation to gain stability. alpha particle nuclear equation beta radiation beta particle gamma rays

51 Section 4-4 Radioactivity Nuclear reactions can change one element into another element. In the late 1890s, scientists noticed some substances spontaneously emitted radiation, a process they called radioactivity.radioactivity The rays and particles emitted are called radiation. radiation A reaction that involves a change in an atom's nucleus is called a nuclear reaction.nuclear reaction

52 Section 4-4 Radioactive Decay Unstable nuclei lose energy by emitting radiation in a spontaneous process called radioactive decay. radioactive decay Unstable radioactive elements undergo radioactive decay thus forming stable nonradioactive elements.

53 Section 4-4 Radioactive Decay (cont.) Alpha radiation is made up of positively charged particles called alpha particles.Alpha radiationalpha particles Each alpha particle contains two protons and two neutrons and has a 2 + charge.

54 Section 4-4 Radioactive Decay (cont.) The figure shown below is a nuclear equation showing the radioactive decay of radium-226 to radon-222.nuclear equation The mass is conserved in nuclear equations.

55 Section 4-4 Radioactive Decay (cont.) Beta radiation is radiation that has a negative charge and emits beta particles.Beta radiation Each beta particle is an electron with a 1– charge.beta particle

56 Section 4-4 Radioactive Decay (cont.)

57 Section 4-4 Radioactive Decay (cont.) Gamma rays are high-energy radiation with no mass and are neutral.Gamma rays Gamma rays account for most of the energy lost during radioactive decay.

58 Section 4-4 Radioactive Decay (cont.) Atoms that contain too many or two few neutrons are unstable and lose energy through radioactive decay to form a stable nucleus. Few exist in nature—most have already decayed to stable forms.

59 A.A B.B C.C D.D Section 4-4 Section 4.4 Assessment A reaction that changes one element into another is called what? A.chemical reaction B.beta radiation C.nuclear reaction D.physical reaction

60 A.A B.B C.C D.D Section 4-4 Section 4.4 Assessment Why are radioactive elements rare in nature? A.They do no occur on Earth. B.Most have already decayed to a stable form. C.They take a long time to form. D.They are too hard to detect.

61 End of Section 4-4

62 Resources Menu Chemistry Online Study Guide Chapter Assessment Standardized Test Practice Image Bank Concepts in Motion

63 Study Guide 1 Section 4.1 Early Ideas About Matter Key Concepts Democritus was the first person to propose the existence of atoms. According to Democritus, atoms are solid, homogeneous, and indivisible. Aristotle did not believe in the existence of atoms. John Dalton’s atomic theory is based on numerous scientific experiments.

64 Study Guide 2 Section 4.2 Defining the Atom Key Concepts An atom is the smallest particle of an element that maintains the properties of that element. Electrons have a 1– charge, protons have a 1+ charge, and neutrons have no charge. An atom consists mostly of empty space surrounding the nucleus.

65 Study Guide 3 Section 4.3 How Atoms Differ Key Concepts The atomic number of an atom is given by its number of protons. The mass number of an atom is the sum of its neutrons and protons. atomic number = number of protons = number of electrons mass number = atomic number + number of neutrons Atoms of the same element with different numbers of neutrons are called isotopes. The atomic mass of an element is a weighted average of the masses of all of its naturally occurring isotopes.

66 Study Guide 4 Section 4.4 Unstable Nuclei and Radioactive Decay Key Concepts Chemical reactions involve changes in the electrons surrounding an atom. Nuclear reactions involve changes in the nucleus of an atom. There are three types of radiation: alpha (charge of 2+), beta (charge of 1–), and gamma (no charge). The neutron-to-proton ratio of an atom’s nucleus determines its stability.

67 A.A B.B C.C D.D Chapter Assessment 1 Whose work led to the modern atomic theory? A.Dalton B.Rutherford C.Einstein D.Aristotle

68 A.A B.B C.C D.D Chapter Assessment 2 Which particle is not found in the nucleus of an atom? A.neutron B.proton C.gamma ray D.electron

69 A.A B.B C.C D.D Chapter Assessment 3 Two isotopes of an unknown element have the same number of: A.protons B.neutrons C.electrons D.both A and C

70 A.A B.B C.C D.D Chapter Assessment 4 Lithium has an atomic mass of 6.941 and two isotopes, one with 6 neutrons and one with 7 neutrons. Which isotope is more abundant? A. 6 Li B. 7 Li C.Both isotopes occur equally. D.unable to determine

71 A.A B.B C.C D.D Chapter Assessment 5 What happens when an element emits radioactive particles? A.It gains energy. B.It gains neutrons. C.It loses stability. D.It loses energy.

72 A.A B.B C.C D.D STP 1 What is the smallest particle of an element that still retains the properties of that element? A.proton B.atom C.electron D.neutron

73 A.A B.B C.C D.D STP 2 How many neutrons, protons, and electrons does 124 54 Xe have? A.124 neutrons, 54 protons, 54 electrons B.70 neutrons, 54 protons, 54 electrons C.124 neutrons, 70 protons, 54 electrons D.70 neutrons, 70 protons, 54 electrons

74 A.A B.B C.C D.D STP 3 The primary factor in determining an atom's stability is its ratio of neutrons to ____. A.protons B.electrons C.alpha particles D.isotopes

75 A.A B.B C.C D.D STP 4 What is the densest region of an atom? A.electron cloud B.nucleus C.isotopes D.atomic mass

76 A.A B.B C.C D.D STP 5 Why are electrons attracted to the cathode in a cathode ray tube? A.The cathode is more stable. B.The cathode has a positive charge. C.The cathode has a negative charge. D.The cathode has no charge.

77 IB Menu Click on an image to enlarge.

78 IB 1

79 IB 2

80 IB 3

81 IB 4

82 IB 5

83 IB 6

84 IB 7

85 IB 8

86 IB 9

87 IB 10

88 IB 11

89 IB 12

90 IB 13

91 IB 14

92 IB 15

93 IB 16

94 IB 17

95 CIM Table 4.3Properties of Subatomic Particles Figure 4.12 Rutherford's Experiment Figure 4.14 Features of an Atom Figure 4.21 Types of Radiation

96 Help Click any of the background top tabs to display the respective folder. Within the Chapter Outline, clicking a section tab on the right side of the screen will bring you to the first slide in each respective section. Simple navigation buttons will allow you to progress to the next slide or the previous slide. The “Return” button will allow you to return to the slide that you were viewing when you clicked either the Resources or Help tab. The Chapter Resources Menu will allow you to access chapter specific resources from the Chapter Menu or any Chapter Outline slide. From within any feature, click the Resources tab to return to this slide. To exit the presentation, click the Exit button on the Chapter Menu slide or hit Escape [Esc] on your keyboards while viewing any Chapter Outline slide.

97 End of Custom Shows This slide is intentionally blank.


Download ppt "Chapter Menu The Structure of the Atom Section 4.1Section 4.1Early Ideas About Matter Section 4.2Section 4.2 Defining the Atom Section 4.3Section 4.3."

Similar presentations


Ads by Google