Download presentation

Presentation is loading. Please wait.

Published byRoss Anderson Modified over 3 years ago

2
Chemistry Chapter 5 Electrons in Atoms The 1998 Nobel Prize in Physics was awarded "for the discovery of a new form of quantum fluid with fractionally charged excitations." At the left is a computer graphic of this kind of state.1998 Nobel Prize in Physics

3
Electrons in Atoms Thomson – plum pudding Disproven Rutherford – Bohr

4
The Puzzle of the Atom Protons and electrons are attracted to each other because of opposite charges Electrically charged particles moving in a curved path give off energy Despite these facts, atoms don’t collapse

5
So why didn’t the atom collapse?? Why doesn’t the electron lose energy as it orbits???

6
Hold onto your spectral tubes!! The answer actually has to do with light and other electromagnetic radiation.

7
Wave-Particle Duality JJ Thomson won the Nobel prize for describing the electron as a particle. His son, George Thomson won the Nobel prize for describing the wave-like nature of the electron. The electron is a particle! The electron is an energy wave! So there was a difference in opinion between a father and son. Has this ever happened to you?

8
Electrons have properties of Waves and Particles So father and son BOTH right!!

9
Confused??? You’ve Got Company! “No familiar conceptions can be woven around the electron; something unknown is doing we don’t know what.” Physicist Sir Arthur Eddington The Nature of the Physical World 1934 So even the smart dudes were baffled

10
The Wave-like Electron Louis deBroglie The electron propagates through space as an energy wave. To understand the atom, one must understand the behavior of electromagnetic waves. Ok …. so in order to argue with my dad I need to understand light?

11
Maybe I should learn about light

12
c = C = speed of light, a constant (3.00 x 10 8 m/s) = frequency, in units of hertz (hz, sec -1 ) = wavelength, in meters Electromagnetic radiation propagates through space as a wave moving at the speed of light.

13
Types of electromagnetic radiation:

14
E = h E = Energy, in units of Joules (kg·m 2 /s 2 ) h = Planck’s constant (6.626 x 10-34 J·s) = frequency, in units of hertz (hz, sec -1 ) = frequency, in units of hertz (hz, sec -1 ) The energy (E ) of electromagnetic radiation is directly proportional to the frequency ( ) of the radiation.

15
Long Wavelength = Low Frequency = Low ENERGY Short Wavelength = High Frequency = High ENERGY Wavelength Table

16
…produces all of the colors in a continuous spectrum Spectroscopic analysis Spectroscopic analysis of the visible spectrum… Spectroscopic analysis

17
…produces a “bright line” spectrum Spectroscopic analysis of the hydrogen spectrum…

18
This produces bands of light with definite wavelengths. Electron transitions involve jumps of definite amounts of energy.

19
Spectral tubes, flame tests and fireworks… all colored by electrons changing energy levels.

20
The Bohr Model of the Atom Neils Bohr I pictured electrons orbiting the nucleus much like planets orbiting the sun. But I was wrong! They’re more like bees around a hive. WRONG!!!

21
Standing waves do not propagate through space Standing waves are fixed at both ends Only certain sized orbits can contain whole numbers of half wave lengths. The electron as a standing wave:

22
Quantum Numbers Each electron in an atom has a unique set of 4 quantum numbers which describe it. Principal quantum number (n) Angular momentum quantum number (l) Magnetic quantum number (m) Spin quantum number

23
Pauli Exclusion Principle No two electrons in an atom can have the same four quantum numbers. Wolfgang Pauli

24
Principal Quantum Number Generally symbolized by n, it denotes the shell (energy level) in which the electron is located. Number of electrons that can fit in a shell: 2n 2

25
Angular Momentum Quantum Number The angular momentum quantum number, generally symbolized by l, denotes the orbital (subshell) in which the electron is located.

26
Magnetic Quantum Number The magnetic quantum number, generally symbolized by m, denotes the orientation of the electron’s orbital with respect to the three axes in space.

27
Assigning the Numbers The three quantum numbers (n, l, and m) are integers. The principal quantum number (n) cannot be zero. n must be 1, 2, 3, etc. The angular momentum quantum number (l) can be any integer between 0 and n - 1. For n = 3, l can be either 0, 1, or 2. The magnetic quantum number (m) can be any integer between -l and +l. For l = 2, m can be either -2, -1, 0, +1, or +2.

28
Principle, angular momentum, and magnetic quantum numbers: n, l, and m l

29
Spin Quantum Number Spin quantum number denotes the behavior (direction of spin) of an electron within a magnetic field. Possibilities for electron spin:

30
Orbital shapes are defined as the surface that contains 90% of the total electron probability. An orbital is a region within an atom where there is a probability of finding an electron. This is a probability diagram for the s orbital in the first energy level…

31
Schrodinger Wave Equation probability Equation for probability of a single electron being found along a single axis (x-axis) Erwin Schrodinger

32
Heisenberg Uncertainty Principle You can find out where the electron is, but not where it is going. OR… You can find out where the electron is going, but not where it is! “One cannot simultaneously determine both the position and momentum of an electron.” Werner Heisenberg

33
Orbitals of the same shape (s, for instance) grow larger as n increases… Nodes are regions of low probability within an orbital. Sizes of s orbitals

34
Orbitals in outer energy levels DO penetrate into lower energy levels. This is a probability Distribution for a 3s orbital. What parts of the diagram correspond to “nodes” – regions of zero probability? Penetration #1

35
Which of the orbital types in the 3 rd energy level Does not seem to have a “node”? WHY NOT? Penetration #2

36
The s orbital has a spherical shape centered around the origin of the three axes in space. s orbital shape

37
There are three dumbbell-shaped p orbitals in each energy level above n = 1, each assigned to its own axis (x, y and z) in space. P orbital shape

38
Things get a bit more complicated with the five d orbitals that are found in the d sublevels beginning with n = 3. To remember the shapes, think of “double dumbells ” …and a “dumbell with a donut”! d orbital shapes

39
Shape of f orbitals

40
Orbital filling table

41
Slide Show Electron configuration of the elements of the first three series

42
Slide Show Irregular confirmations of Cr and Cu Chromium steals a 4s electron to half fill its 3d sublevel Copper steals a 4s electron to FILL its 3d sublevel

43
We have colors because of the movement of electron!! Ahh ChemisTRY

44
Chemistry Chapter 5 Atomic Structure Presented by Mr. Mole You will learn about him later…

45
Mole Day 6:02 October 23 Poor mister mole….we never celebrate his day because it takes to long to light his 6.02 x 10 23 candles

Similar presentations

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google