Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Applications of ADAS to ITER Diagnostics Robin Barnsley and ITER Diagnostics Division Martin O’Mullane, Strathclyde University ADAS Workshop, Cadarache,

Similar presentations


Presentation on theme: "1 Applications of ADAS to ITER Diagnostics Robin Barnsley and ITER Diagnostics Division Martin O’Mullane, Strathclyde University ADAS Workshop, Cadarache,"— Presentation transcript:

1 1 Applications of ADAS to ITER Diagnostics Robin Barnsley and ITER Diagnostics Division Martin O’Mullane, Strathclyde University ADAS Workshop, Cadarache, 24-25 September 2012 - Overview of spectroscopic diagnostics - ADAS-based emission modelling for x-ray camera ADAS Workshop, Cadarache, 25 September 2012, R Barnsley

2 2 ITER (www.iter.org) - Superconducting Tokamak - Single-null divertor - Elongated, triangular plasma - Additional heating from RF, and negative-ion neutral-beams 500P fus (MW) 10Q (P fus /P in ) 80+P  (MW) 40-90P aux (MW) 1.85, 0.5 ,, 5.3B t (T) 15(17)I P (MA) 850V P (m 3 ) 2a (m) 6.2 R (m) ADAS Workshop, Cadarache, 25 September 2012, R Barnsley

3 3 ITER cross-section ADAS Workshop, Cadarache, 25 September 2012, R Barnsley

4 4

5 5

6 6 Overview of diagnostic locations

7 7 PBSSystem Wavelength/ Energy range FunctionStatus 55E4Divertor impurity monitor 200 – 1000 nm Impurity species and influx, divertor He density, ionisation front position, T i. CDR held 55E2 H  system Visible region ELMs, L/H mode indicator, n T /n D and n H /n D at edge and in divertor. CDR held 55E3 VUV spectroscopy - main plasma 2.3 – 160 nmImpurity species identification. PA signed 55EGVUV spectroscopy - divertor 15 – 40 nmDivertor impurity influxes, particularly Tungsten PA signed 55EHVUV spectroscopy - edge15-40 nmEdge impurity profilesPA signed 55EDX-Ray spectroscopy – survey 0.1 – 10 nmImpurity species identification CDR complete 55EIX-ray spectrometer - edge 0.4 – 0.6 nmImpurity species identification, plasma rotation, T i. PA signed 55E5X-ray spectroscopy-core 0.1 – 0.5 nmImpurity species identification, plasma rotation, T i. CDR Nov 2012 55E7Radial x-ray camera 1 – 200 keVMHD, Impurity influxes, Te CDR held 55EBMSE Visible regionq (r), internal magnetic structure CDR Jan 2013 55E1Core CXRS Visible region T i (r), He ash density, impurity density profile, plasma rotation, alphas. CDR May 2013 55ECEdge CXRS Visible region T i (r), He ash density, impurity density profile, plasma rotation, alphas. CDR Oct 2012 55EFBES Visible regionBeam-attenuation and fluctuations. CDR Oct 2012 55E8NPA 10 keV,- 4 MeV)n T /n D and n H /n D at edge and core. Fast alphas. PA signed 55EALaser-induced fluorescenceVisible Divertor neutrals Pre- CDR held 55EHard X-ray Monitor 100keV – 20MeVRunaway electron detection CDR Early 2013 ADAS Workshop, Cadarache, 25 September 2012, R Barnsley

8 8 From the 2006 ADAS Workshop, Abingdon ADAS-SANCO modelled ITER broadband x-ray spectra Line and continuum in 5% energy bands, radially resolved < 10 keV: mainly impurity information > 10 keV: mainly Te information Modern detectors will be able measure this… ADAS Workshop, Cadarache, 25 September 2012, R Barnsley

9 9 Advances in detector technology enable new measurement capability CERN-led Medipix 3 – in development Active pixel detector - Each pixel has analog pulse processing, thresholds, and digital counter -256 x 256 array. Pixels 55 um square- Multiple enrgy windows -1 us pulse-process time per pixel- Radiation-hard to ~10 14 neutron/cm 2 Diagnostic applications -X-ray spectroscopy and imaging- Particle detection and spectroscopy -Fast visible and VUV framing (with MCP) -Neutron and gamma spectroscopy

10 10 ADAS Workshop, Cadarache, 25 September 2012, R Barnsley 2007 Diagnostic Review Radial X-ray Camera added to ITER Ex-port cameras where possible Detectors Slits Be window Valve In-port cameras where necessary Seconday vacuum Removable cassette Detectors Be windows Slits

11 11 Diagnostic design process Physics study, emission modelling etc: ADAS-SANCO Conceptual system design Signal and noise modelling:Neutronics Assess derived measurements relative to the requirements Conceptual design review Detail design > review Manufacturing design > review Manufacture, installation, commissioning, operation etc

12 12 ADAS Workshop, Cadarache, 25 September 2012, R Barnsley

13 13 ADAS Workshop, Cadarache, 25 September 2012, R Barnsley

14 14 ADAS Workshop, Cadarache, 25 September 2012, R Barnsley

15 15 ADAS Workshop, Cadarache, 25 September 2012, R Barnsley

16 16 ADAS Workshop, Cadarache, 25 September 2012, R Barnsley

17 17 ADAS Workshop, Cadarache, 25 September 2012, R Barnsley Diagnostic first wall DFW Diagnostic shield module DSM Port-plug Port-plug rear flange Secondary vacuum tube In-port detectors Ex-port detectors

18 18 Separate slots for each camera module – big improvement in neutronics - practical DFW slots

19 Radial X-Ray Camera Conceptual Design Review 21/02/2012 Page 19 Comparison of Total DT neutron Flux S Jakhar 1.72×10 8 n/cm 2 /s 1.3×10 10 n/cm 2 /s Improved ModelInitial Model

20 20 Survey & Divertor VUV CDR, Introduction, R Barnsley April 20 2011 20

21 21  Grazing Incidence Angle: 4~40 degree (depend on channels) Spectral Range: 2.4 nm < λ < 160 nm Resolution ~100 < λ/dλ < ~700 Core VUV – 5-channel VUV spectrometer

22 22 Survey & Divertor VUV CDR, Introduction, R Barnsley April 20 2011 22 5-channel Main Plasma Survey Spectrometers, with shielding concept for MCNP analysis To plasma Collimating mirrors Slits Spectrometers Detectors Shielding

23 23 ADAS Workshop, Cadarache, 25 September 2012, R Barnsley

24 24 ADAS Workshop, Cadarache, 25 September 2012, R Barnsley

25 KSTAR VUV Spectrometer Test 2012 Campaign (F-Port) CR Seon, MS Cheon, S Pak & HG Lee 87 deg. Spectrometer table on the F- port deck 3 m - long Vacuum Extension Tube Two Gate Valves One Bellows Collimation Mirror Set 1. Cylindrical 10 cm x 5 cm, R.O.C. = 13.5 cm 2. Convex 10 cm x 5 cm, R.O.C. = 700 cm Vacuum extension VUV spectrometer on the optical table 25

26 First Measurement of KSTAR Plasma Impurity Fe XVI C III He II Fe XV O VI C IV He II O VI Impurity lines of initial plasmas at KSTAR 2012 Campaign (2012. 09. 06) Metal Lines 26

27 27 Summary ADAS-based plasma emission modelling is essential for the physics basis of diagnostic system design. Currently ITER is updating the modelling in support of the system conceptual design reviews (CDR) Passive spectroscopy almost complete – only core x-ray remains First prototype in operation – VUV survey The need for update and expansion of the modelling will continue through the detail design phase into operations


Download ppt "1 Applications of ADAS to ITER Diagnostics Robin Barnsley and ITER Diagnostics Division Martin O’Mullane, Strathclyde University ADAS Workshop, Cadarache,"

Similar presentations


Ads by Google