Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Selim and Rachel Benin School of Engineering and Computer Science Keyword Proximity Search in Complex Data Graphs Konstantin Golenberg Benny Kimelfeld.

Similar presentations


Presentation on theme: "The Selim and Rachel Benin School of Engineering and Computer Science Keyword Proximity Search in Complex Data Graphs Konstantin Golenberg Benny Kimelfeld."— Presentation transcript:

1 The Selim and Rachel Benin School of Engineering and Computer Science Keyword Proximity Search in Complex Data Graphs Konstantin Golenberg Benny Kimelfeld Yehoshua Sagiv

2 Overview Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Keyword Proximity Search System Overview Algorithm for Answer Generation Ranking Answers Conclusions & Future Work

3 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Keyword Search The natural (and popular) option: Keyword Search Schema-Free Extraction of Data Nowadays… Exposure to many databases Different types (relational, XML, RDF…) Different schemas Not easy to use traditional paradigms of querying (e.g., SQL, XQuery, SPARQL) and, moreover, they require a thorough understanding of the schema Goal: Enable users to instantly pose (inaccurate) queries without knowing the schema P roblem: Inherently different from standard IR

4 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Data have varying degrees of structure –Relational (w/ foreign keys), XML (w/ id-references) –Natural representation by a graph –Usually, data-centric rather than document-centric A query is a set of keywords No structural constraints Keyword Proximity Search (KPS) The Goal: Extract meaningful parts of data w.r.t. the keywords Agrawal et al. ICDE 02 Hristidis et al., VLDB 02,03, ICDE 03 Bhalotia et al. VLDB 05 Kacholia al., VLDB 06 Ding et al., ICDE 07 Liu et al., SIGMOD 06 Wang et al., VLDB 06 Luo et al., SIGMOD 07 …

5 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Example: Search in RDB IDName Population 22 Amsterdam 1101407 73Brussels951580 IDNameHead Q. 135EU73 175ESA81 CountryOrg. B135 NL135 search Belgium, Brussels CodeNameAreaCapital NL Netherlands 3733022 BBelgium3051073 CitiesOrganizations CountriesMemberships

6 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 IDName Population 22 Amsterdam 1101407 73Brussels951580 IDNameHead Q. 135EU73 175ESA81 CountryOrg. B135 NL135 search Belgium, Brussels CodeNameAreaCapital NL Netherlands 3733022 BBelgium3051073 CitiesOrganizations CountriesMemberships Brussels is the capital city of Belgium

7 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 IDName Population 22 Amsterdam 1101407 73Brussels951580 IDNameHead Q. 135EU73 175ESA81 CountryOrg. B135 NL135 CodeNameAreaCapital NL Netherlands 3733022 BBelgium3051073 CitiesOrganizations CountriesMemberships Brussels hosts EU and Belgium is a member search Belgium, Brussels

8 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Example: Search in XML search Yannakakis, Approximation

9 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Yannakakis wrote a paper about Approximation search Yannakakis, Approximation

10 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Yannakakis is cited by a paper about Approximation search Yannakakis, Approximation

11 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Data Graphs Structural and keyword nodes Edges and nodes may have weights – Weak relationships are penalized by large weights Each keyword has one occurrence in the data graph (technical)

12 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08Queries Q={ Summers, Cohen, coffee } Queries are sets of keywords from the data graph

13 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 An Answer is a Reduced Subtree An answer is a subtree of the data graph Contains all keywords of the query Has no redundant edges (and nodes) 3 variants: directed, undirected, strong (undirected, kws are leaves); This paper

14 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Previous Solutions Lack of guarantees Highly relevant answers might be missed, and / or Inefficient algorithms Rather simple data sets – a (very) small number of relevant answers They considered data that are essentially collections of entities, namely, DBLP, IMDB, Lyrics, etc. An answer is usually within the scope of an entity e.g., the keywords appear in a single movie Crucial problems ignored In particular, the repeated information problem Especially pervasive in complex data graphs

15 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08Contributions A system for keyword proximity search An algorithm for generating answers with guaranteesAn algorithm for generating answers with guarantees Does not miss (valuable) answers Efficient (polynomial delay) Answers generated in a 2-approximate order by height repeated-informationA ranking technique that is aware of the repeated-information problem Gives preference to answers with low similarity to earlier ones Experimentation over a highly-cyclic data graph The Mondial database Many meaningful connections among keywords

16 The MONDIAL Database Institute for Informatics Georg-August-Universität Göttingen http://www.dbis.informatik.uni-goettingen.de/Mondial/

17 Overview Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Keyword Proximity Search System Overview Algorithm for Answer Generation Ranking Answers Conclusions & Future Work

18 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08Challenges Huge no. of answers; not instantiated!Huge no. of answers; not instantiated! Not simple to generate all relevant answers, even if ranking is ignored For practical ranking functions, enumerating the answers in ranked order is probably impossible For example, finding the smallest answer is the intractable Steiner-tree problem Redundancy / repeated information Many answers are very similar (altogether provide a low amount information) Crucial in complex (highly cyclic) data graphs We employ a two-phase architecture:

19 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Architecture: Generator + Ranker Answer Generator Generates next M·k answers (simplified ranking function) Answer Generator Generates next M·k answers (simplified ranking function) top-k answers (relative to those that have already been printed) search(keywords) next k answers Ranker Ranks all answers generated up to now (- printed ones)Ranker Ranks all answers generated up to now (- printed ones) Simplified ranking at first [Bhalotia et al., ICDE02, VLDB05]

20 Overview Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Keyword Proximity Search System Overview Algorithm for Answer Generation Ranking Answers Conclusions & Future Work

21 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Generating the Top Answers: Not Trivial! To demonstrate the difficulty of generating the good (top) answers, lets see how existing approaches operate on a simple example:

22 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Find the Answers in this Example!

23 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 The BANKS Approach nodes v (in a good order) and keyword occurrences: Generate the min-height subtree emanating from v nodes v (in a good order) and keyword occurrences: Generate the min-height subtree emanating from v Answers are directed subtrees [Bhalotia et al., ICDE02, VLDB05]

24 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 The BANKS Approach Answers are directed subtrees Never generated! What about this answer? nodes v (in a good order) and keyword occurrences: Generate the min-height subtree emanating from v nodes v (in a good order) and keyword occurrences: Generate the min-height subtree emanating from v [Bhalotia et al., ICDE02, VLDB05]

25 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 The NUITS Approach nodes v (in a good order): Generate the min-weight subtree that includes v nodes v (in a good order): Generate the min-weight subtree that includes v Answers are undirected subtrees [Ding et al., ICDE07]

26 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 The NUITS Approach nodes v (in a good order): Generate the min-weight subtree that includes v nodes v (in a good order): Generate the min-weight subtree that includes v Answers are undirected subtrees This node is redundant It is actually the previous answer! [Ding et al., ICDE07]

27 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 The NUITS Approach nodes v (in a good order): Generate the min-weight subtree that includes v nodes v (in a good order): Generate the min-weight subtree that includes v Answers are undirected subtrees Again, the previous answer! [Ding et al., ICDE07] This node is redundant

28 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 The NUITS Approach Never generated! What about this answer? nodes v (in a good order): Generate the min-weight subtree that includes v nodes v (in a good order): Generate the min-weight subtree that includes v Answers are undirected subtrees [Ding et al., ICDE07] Severe limit on # of generated answers! ( one per node)

29 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 The DISCOVER / DBXplorer Approach possible queries Q (from the schema) in inc. size: Evaluate Q over the database possible queries Q (from the schema) in inc. size: Evaluate Q over the database All answers are generated in ranked order! [Hristidis et al., VLDB02,03, ICDE03][Agrawal et al. ICDE02] Easy to implement! DBMS queries– No in-memory graph algorithms

30 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 The DISCOVER / DBXplorer Approach possible queries Q (from the schema) in inc. size: Evaluate Q over the database possible queries Q (from the schema) in inc. size: Evaluate Q over the database But many queries do not generate any answer at all! Worst case: exponential in the data Limited Ranking! by the query (rather than the answer) weight [Hristidis et al., VLDB02,03, ICDE03][Agrawal et al. ICDE02] Inefficient!

31 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 We Need Generators w/ Guarantees! All answers are generated I n particular, each of the relevant answers is produced at some point (100% recall is achievable) Controlled order of answers F or instance, increasing weight, increasing height, approximate (what is the ratio?) / heuristic order Efficiency T he top-k answers should be generated efficiently B ound on time between successive answers

32 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Order by Increasing Weight / Height If Then Top-k Answers

33 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Approximate and Heuristic Orders Approximate order Heuristic order There is a provable bound on the extent to which the actual order can deviate from the optimal one Intuitively, expected to be close to the optimal order, but there is no guarantee

34 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 C-Approximate Order (inc. Weight / Height) If Then C-Approximation of the Top-k Answers [Fagin et al., PODS01] C-Approximation of the Top-k Answers [Fagin et al., PODS01] C

35 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Our Approach PODS06: Enum. by (exact / approx) inc. weight Problem: Repeated application of Steiner-tree algs Heavy – hard to implement efficiently Here: Follow the basic approach of PODS06 But, we adopt the BANKS idea of using height ( weight) for the enumeration order Recall: BANKS might miss highly relevant answers Thus, we bypass Steiner trees and obtain a much faster algorithm answers are not missedapproximate orderpoly. delayOur alg. has all 3 guarantees: answers are not missed, approximate order, poly. delay

36 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Find the shortest answer (w/o constraints) An Overview of the Algorithm Enum. by (2-approx.) increasing height Find (a 2-approx. of) the shortest answer under constraints Task: Task: Task: Lawler / Yen method Types of Constraints: Inclusion: include edge e Exclusion: exclude edge e Backward-search (Dijkstra) iterators (~ BANKS) The intricate part …

37 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Finding an Answer under Constraints Inclusion: include edge e Exclusion: exclude edge e Handling exclusion constraints is easy Simply remove the excluded edges from the graph

38 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Inclusion Constraints are the Problem Inclusion: include edge e Exclusion: exclude edge e But it is not an answer! The shortest subtree that contains the kws and satisfies the consts redundant edge Not reduced (has redundancy) Moreover, includes a previously printed answer Sometimes, no answer at all!

39 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 The Correct Answer Inclusion: include edge e Exclusion: exclude edge e Technique: 1. 1. Generate a min-height subtree (as in the wrong solution) 2. 2. Not an answer? modify Intricate to guarantee 2-approx. Details in the proceedings Technique: 1. 1. Generate a min-height subtree (as in the wrong solution) 2. 2. Not an answer? modify Intricate to guarantee 2-approx. Details in the proceedings

40 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Running Times Each entry is an avg. of 4 queries

41 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Alg. Order vs. Weight Order How many answers are generated in order to obtain the top-k (among 1000) according to weight? Each entry is an avg. of 4 queries

42 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Effective Approx. Ratio: Height Effective Approx. Ratio: Height 3 keywords 2 keywords % k (answers) Effective approx. ratio worst / best (among first k)

43 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Effective Approx. Ratio: Height Effective Approx. Ratio: Height 5 keywords 4 keywords % k (answers) worst / best (among first k) Effective approx. ratio

44 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Effective Approx. Ratio: Weight Effective Approx. Ratio: Weight 3 keywords 2 keywords % k (answers) Effective approx. ratio worst / best (among first k)

45 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Effective Approx. Ratio: Weight Effective Approx. Ratio: Weight 5 keywords 4 keywords % k (answers) Effective approx. ratio worst / best (among first k)

46 Overview Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Keyword Proximity Search System Overview Algorithm for Answer Generation Ranking Answers Conclusions & Future Work

47 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 The Basic Ranking Function abs-rel ( a ) = 1 weight ( a ) weight ( a ) = Σ weight ( node ) + Σ weight ( edge ) node aedge a

48 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Determining the Weight of an Edge Many orgs enter country weak connection (large weight) org. enters many countries weak connection (large weight) Strong connection (small weight)Strongest!

49 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 The Basic Ranking Function (contd) abs-rel ( a ) = 1 weight ( a ) weight ( a ) = Σ weight ( node ) + Σ weight ( edge ) node aedge a weight ( node ) = fixed (1) weight ( edge ) = log ( 1 + α · out ( v 1 t 2 ) + (1 α )· in ( t 1 v 2 ) ) edge = ( v 1, v 2 ) tag ( v i ) = t i # t 2 nodes with edges from v 1 # t 1 nodes with edges to v 2 Relevant answers but …

50 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Answers with High Similarity

51 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 But each individual answer is relevant! Combinations of Connections

52 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Dynamic Ranking Candidate Answers Output … Next-Answer() a extract-top-candidate() print( a ) for all candidates c and pairs of keywords k 1, k 2 if c and a connect k 1 and k 2 similarly, then penalize( c ) What does it mean ?

53 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Two Types of Similarity The same connection Isomorphic connection (same schema) k 1, k 2 = Belgium, France a c1c1 c2c2 Penalty: 1 Penalty: p ( 1) 2 options: Sum over printed answers Max over printed answers

54 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 The General Ranking Function abs-rel (c) = 1 weight (c) rpt-inf (c) = p or 1 k 1, k 2 kws printed answers or max p or 1 k 1, k 2 kws printed answers score (c) = 1 + ε · rpt-inf (c) abs-rel (c) 1

55 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Score Loss vs. Diversity Sum, p=1.0 Max, p=0.1 5 keywords Avg. of 4 queries Top-20 answers % of max. ε Score (1/weight)Connections (u.t. iso.)Connections The bottom configuration is better than the top one Smaller reduction of score for similar/higher degree of diversity

56 Overview Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Keyword Proximity Search System Overview Algorithm for Answer Generation Ranking Answers Conclusions & Future Work

57 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08Conclusions KPS in complex data graphs has inherent problems that are ignored in existing systems 2-component arch.: answer generator & ranker 1 st component: Enum. algorithm w/ guarantees Efficient, correct (no missed answers), 2-approximate order by height In the paper: Ext. to OR semantics (exact order) 2 nd component: Dynamically ranks candidates by penalizing them for repeated information Our experiments over Mondial suggest a tuning of the parameters that gives the best tradeoff between information gain and score loss

58 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Current & Future Research Improve / optimize the answer generator Successful: Parallelism Concurrent queries? Implement different answer generators E.g., by (approx.) increasing weight [KS-PODS06] Assessment by humans Relevancy / repeated information Methodology example: [Zhang et al., SIGIR02] Other aspects Answer presentation

59 Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Answer Presentation On the Web, we instantly get the meaning of an answer (Web page) by the , URL and, possibly, a snippet of the text In KPS, understanding the meaning of a subtree is note straightforwardneed to derive the semantics from the graphical presentation <script type="application/ld+json"> { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/2/685974/slides/slide_59.jpg", "name": "Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Answer Presentation On the Web, we instantly get the meaning of an answer (Web page) by the <title>, URL and, possibly, a snippet of the text In KPS, understanding the meaning of a subtree is note straightforwardneed to derive the semantics from the graphical presentation", "description": "Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Answer Presentation On the Web, we instantly get the meaning of an answer (Web page) by the <title>, URL and, possibly, a snippet of the text In KPS, understanding the meaning of a subtree is note straightforwardneed to derive the semantics from the graphical presentation", "width": "800" } </script> <noscript> <img src="http://images.slideplayer.com/2/685974/slides/slide_59.jpg" width="800" align="left" alt="Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Answer Presentation On the Web, we instantly get the meaning of an answer (Web page) by the <title>, URL and, possibly, a snippet of the text In KPS, understanding the meaning of a subtree is note straightforwardneed to derive the semantics from the graphical presentation" title="Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Answer Presentation On the Web, we instantly get the meaning of an answer (Web page) by the <title>, URL and, possibly, a snippet of the text In KPS, understanding the meaning of a subtree is note straightforwardneed to derive the semantics from the graphical presentation"> </noscript> <br /></p> <p class="uk-text-justify uk-nbfc uk-margin "> <span class="uk-badge uk-margin-small-right"> <a href="http://images.slideplayer.com/2/685974/slides/slide_60.jpg" target="_blank" title="Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Whats the Meaning of this Answer." class="image_link uk-text-large uk-margin-small-left uk-margin-small-right"> 60 </a> </span> Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Whats the Meaning of this Answer? A snapshot of BANKS demo (http://www.cse.iitb.ac.in/banks/) IMDB Harder in XML! No division into relations (everything is element / attribute) What information is needed to describe a node? <script type="application/ld+json"> { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/2/685974/slides/slide_60.jpg", "name": "Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Whats the Meaning of this Answer.", "description": "A snapshot of BANKS demo (http://www.cse.iitb.ac.in/banks/) IMDB Harder in XML. No division into relations (everything is element / attribute) What information is needed to describe a node .", "width": "800" } </script> <noscript> <img src="http://images.slideplayer.com/2/685974/slides/slide_60.jpg" width="800" align="left" alt="Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Whats the Meaning of this Answer." title="A snapshot of BANKS demo (http://www.cse.iitb.ac.in/banks/) IMDB Harder in XML. No division into relations (everything is element / attribute) What information is needed to describe a node ."> </noscript> <br /></p> <p class="uk-text-justify uk-nbfc uk-margin "> <span class="uk-badge uk-margin-small-right"> <a href="http://images.slideplayer.com/2/685974/slides/slide_61.jpg" target="_blank" title="Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Answer Presentation On the Web, we instantly understand the meaning of an answer (Web page) by reading the element, the URL and, possibly, a snapshot of the text In KPS, understanding the meaning of a subtree is cumbersome since we need to derive the semantics from the presentation Solution: (under develop.) Graphical presentation is based on restructuring answers in terms of of entities, properties and relationships Apply heuristics for determining the minimal set of properties required for each entity" class="image_link uk-text-large uk-margin-small-left uk-margin-small-right"> 61 </a> </span> Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Answer Presentation On the Web, we instantly understand the meaning of an answer (Web page) by reading the element, the URL and, possibly, a snapshot of the text In KPS, understanding the meaning of a subtree is cumbersome since we need to derive the semantics from the presentation Solution: (under develop.) Graphical presentation is based on restructuring answers in terms of of entities, properties and relationships Apply heuristics for determining the minimal set of properties required for each entity <script type="application/ld+json"> { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/2/685974/slides/slide_61.jpg", "name": "Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Answer Presentation On the Web, we instantly understand the meaning of an answer (Web page) by reading the element, the URL and, possibly, a snapshot of the text In KPS, understanding the meaning of a subtree is cumbersome since we need to derive the semantics from the presentation Solution: (under develop.) Graphical presentation is based on restructuring answers in terms of of entities, properties and relationships Apply heuristics for determining the minimal set of properties required for each entity", "description": "Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Answer Presentation On the Web, we instantly understand the meaning of an answer (Web page) by reading the element, the URL and, possibly, a snapshot of the text In KPS, understanding the meaning of a subtree is cumbersome since we need to derive the semantics from the presentation Solution: (under develop.) Graphical presentation is based on restructuring answers in terms of of entities, properties and relationships Apply heuristics for determining the minimal set of properties required for each entity", "width": "800" } </script> <noscript> <img src="http://images.slideplayer.com/2/685974/slides/slide_61.jpg" width="800" align="left" alt="Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Answer Presentation On the Web, we instantly understand the meaning of an answer (Web page) by reading the element, the URL and, possibly, a snapshot of the text In KPS, understanding the meaning of a subtree is cumbersome since we need to derive the semantics from the presentation Solution: (under develop.) Graphical presentation is based on restructuring answers in terms of of entities, properties and relationships Apply heuristics for determining the minimal set of properties required for each entity" title="Benny Kimelfeld Keyword Proximity Search in Complex Data Graphs The Hebrew UniversitySIGMOD08 Answer Presentation On the Web, we instantly understand the meaning of an answer (Web page) by reading the element, the URL and, possibly, a snapshot of the text In KPS, understanding the meaning of a subtree is cumbersome since we need to derive the semantics from the presentation Solution: (under develop.) Graphical presentation is based on restructuring answers in terms of of entities, properties and relationships Apply heuristics for determining the minimal set of properties required for each entity"> </noscript> <br /></p> <p class="uk-text-justify uk-nbfc uk-margin uk-hidden"> <span class="uk-badge uk-margin-small-right"> <a href="http://images.slideplayer.com/2/685974/slides/slide_62.jpg" target="_blank" title="" class="image_link uk-text-large uk-margin-small-left uk-margin-small-right"> 62 </a> </span> <script type="application/ld+json"> { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/2/685974/slides/slide_62.jpg", "name": "", "description": "", "width": "800" } </script> <noscript> <img src="http://images.slideplayer.com/2/685974/slides/slide_62.jpg" width="800" align="left" alt="" title=""> </noscript> </p> <p class="uk-text-justify uk-nbfc uk-margin "> <span class="uk-badge uk-margin-small-right"> <a href="http://images.slideplayer.com/2/685974/slides/slide_63.jpg" target="_blank" title="Thank you! Questions" class="image_link uk-text-large uk-margin-small-left uk-margin-small-right"> 63 </a> </span> Thank you! Questions? <script type="application/ld+json"> { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/2/685974/slides/slide_63.jpg", "name": "Thank you! Questions", "description": "Thank you! Questions", "width": "800" } </script> <noscript> <img src="http://images.slideplayer.com/2/685974/slides/slide_63.jpg" width="800" align="left" alt="Thank you! Questions" title="Thank you! Questions"> </noscript> <br /></p> </div> <hr class="uk-article-divider"> <div class="uk-article"> <div id="CIHAGAIHHVJVI" class="AMDBC AMDBCPIKBMDAMBYM uk-text-center"></div> <div class="uk-article uk-margin-top"> <a href="javascript:;" id="download_pres_btn" data-toggle="modal" data-target="#download-modal" class="uk-margin">Download ppt "The Selim and Rachel Benin School of Engineering and Computer Science Keyword Proximity Search in Complex Data Graphs Konstantin Golenberg Benny Kimelfeld."</a> <!-- <a href="javascript:document.getElementById('download_form_2').submit();" class="uk-margin">--><!--</a>--> </div> <hr class="uk-article-divider"> <ul class="uk-comment-list"> <li> <article class="uk-comment uk-comment-primary"> <header class="uk-comment-header"> <p class="uk-margin-top uk-margin-bottom-remove"> <a style="font-size: 17px; margin-right: 20px;" href="/theme/ppt-on-domestic-robots-9262.html">Ppt on domestic robots</a> <a style="font-size: 21px; margin-right: 20px;" href="/theme/water-pollution-for-kids-ppt-on-batteries-8524.html">Water pollution for kids ppt on batteries</a> <a style="font-size: 25px; margin-right: 20px;" href="/theme/ppt-on-online-mobile-shopping-project-3883.html">Ppt on online mobile shopping project</a> <a style="font-size: 10px; margin-right: 20px;" href="/theme/ppt-on-conceptual-artists-12242.html">Ppt on conceptual artists</a> <a style="font-size: 13px; margin-right: 20px;" href="/theme/ppt-on-indian-treasury-bills-7210.html">Ppt on indian treasury bills</a> <a style="font-size: 13px; margin-right: 20px;" href="/theme/ppt-on-pelton-turbine-1660.html">Ppt on pelton turbine</a> <a style="font-size: 23px; margin-right: 20px;" href="/theme/ppt-on-venture-capital-for-mba-students-13011.html">Ppt on venture capital for mba students</a> <a style="font-size: 21px; margin-right: 20px;" href="/theme/ppt-on-soft-skills-for-students-3393.html">Ppt on soft skills for students</a> <a style="font-size: 11px; margin-right: 20px;" href="/theme/best-ppt-on-earth-day-6248.html">Best ppt on earth day</a> <a style="font-size: 24px; margin-right: 20px;" href="/theme/ppt-on-layer-3-switching-configuration-8416.html">Ppt on layer 3 switching configuration</a> </p> </header> </article> </li> </ul> <div id="bottom-line" class="uk-margin"></div> </div> </div> </div> </div> <div class="uk-width-small-1-1 uk-width-medium-4-4 uk-width-large-3-10 right-sidebar"> <div id="CIHAGAIHHVJVAWQ" class="AMDBC AMDBCPIKBMDAMBYM uk-text-center uk-margin-small-bottom uk-margin-top"></div> <div class="similar-sidebar uk-margin-bottom uk-margin-top uk-panel uk-panel-box uk-panel-box-secondary uk-margin"> <h3 class="tm-text-dark"> <span class="uk-icon-list uk-margin-small-right"></span>Similar presentations </h3> <hr class="uk-article-divider"> <div id="CIHAGAIHHVJVAVA" class="AMDBC AMDBCPIKBMDAMBYM uk-text-center uk-margin-bottom"></div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/26/8338280/big_thumb.jpg" title="CIKM 2005 1 Finding and Approximating Top-k Answers in Keyword Proximity Search Benny Kimelfeld Yehoshua Sagiv Benny Kimelfeld and Yehoshua Sagiv The Selim.>" alt="CIKM 2005 1 Finding and Approximating Top-k Answers in Keyword Proximity Search Benny Kimelfeld Yehoshua Sagiv Benny Kimelfeld and Yehoshua Sagiv The Selim."> <a href="/slide/8338280/" title="CIKM 2005 1 Finding and Approximating Top-k Answers in Keyword Proximity Search Benny Kimelfeld Yehoshua Sagiv Benny Kimelfeld and Yehoshua Sagiv The Selim.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>CIKM Finding and Approximating Top-k Answers in Keyword Proximity Search Benny Kimelfeld Yehoshua Sagiv Benny Kimelfeld and Yehoshua Sagiv The Selim.</p> </div> </a> </div> </div> </div> <div id="CIHAGAIHHVJVA" class="AMDBC AMDBCPIKBMDAMBYM sidebar-item uk-text-center uk-margin-bottom"></div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/16/4957579/big_thumb.jpg" title="Keyword Proximity Search on Graphs M.Sc. Systems Course The Hebrew University of Jerusalem, Winter 2006.>" alt="Keyword Proximity Search on Graphs M.Sc. Systems Course The Hebrew University of Jerusalem, Winter 2006."> <a href="/slide/4957579/" title="Keyword Proximity Search on Graphs M.Sc. Systems Course The Hebrew University of Jerusalem, Winter 2006.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Keyword Proximity Search on Graphs M.Sc. Systems Course The Hebrew University of Jerusalem, Winter 2006.</p> </div> </a> </div> </div> </div> <div id="CIHAGAIHHVJVC" class="AMDBC AMDBCPIKBMDAMBYM sidebar-item uk-text-center uk-margin-bottom"></div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/24/7358575/big_thumb.jpg" title="Mehdi Kargar Aijun An York University, Toronto, Canada Keyword Search in Graphs: Finding r-cliques.>" alt="Mehdi Kargar Aijun An York University, Toronto, Canada Keyword Search in Graphs: Finding r-cliques."> <a href="/slide/7358575/" title="Mehdi Kargar Aijun An York University, Toronto, Canada Keyword Search in Graphs: Finding r-cliques.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Mehdi Kargar Aijun An York University, Toronto, Canada Keyword Search in Graphs: Finding r-cliques.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/25/8257749/big_thumb.jpg" title="Mehdi Kargar Aijun An York University, Toronto, Canada Keyword Search in Graphs: Finding r-cliques.>" alt="Mehdi Kargar Aijun An York University, Toronto, Canada Keyword Search in Graphs: Finding r-cliques."> <a href="/slide/8257749/" title="Mehdi Kargar Aijun An York University, Toronto, Canada Keyword Search in Graphs: Finding r-cliques.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Mehdi Kargar Aijun An York University, Toronto, Canada Keyword Search in Graphs: Finding r-cliques.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/14/4290526/big_thumb.jpg" title="Optimizing and Parallelizing Ranked Enumeration Konstantin Golenberg Benny Kimelfeld Benny Kimelfeld Yehoshua Sagiv The Hebrew University of Jerusalem.>" alt="Optimizing and Parallelizing Ranked Enumeration Konstantin Golenberg Benny Kimelfeld Benny Kimelfeld Yehoshua Sagiv The Hebrew University of Jerusalem."> <a href="/slide/4290526/" title="Optimizing and Parallelizing Ranked Enumeration Konstantin Golenberg Benny Kimelfeld Benny Kimelfeld Yehoshua Sagiv The Hebrew University of Jerusalem.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Optimizing and Parallelizing Ranked Enumeration Konstantin Golenberg Benny Kimelfeld Benny Kimelfeld Yehoshua Sagiv The Hebrew University of Jerusalem.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/26/8746191/big_thumb.jpg" title="Finding a Minimal Tree Pattern Under Neighborhood Constraints Benny Kimelfeld Yehoshua Sagiv IBM Research – AlmadenThe Hebrew University of Jerusalem 2011.>" alt="Finding a Minimal Tree Pattern Under Neighborhood Constraints Benny Kimelfeld Yehoshua Sagiv IBM Research – AlmadenThe Hebrew University of Jerusalem 2011."> <a href="/slide/8746191/" title="Finding a Minimal Tree Pattern Under Neighborhood Constraints Benny Kimelfeld Yehoshua Sagiv IBM Research – AlmadenThe Hebrew University of Jerusalem 2011.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Finding a Minimal Tree Pattern Under Neighborhood Constraints Benny Kimelfeld Yehoshua Sagiv IBM Research – AlmadenThe Hebrew University of Jerusalem 2011.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/13/3842269/big_thumb.jpg" title="DISCOVER: Keyword Search in Relational Databases Vagelis Hristidis University of California, San Diego Yannis Papakonstantinou University of California,>" alt="DISCOVER: Keyword Search in Relational Databases Vagelis Hristidis University of California, San Diego Yannis Papakonstantinou University of California,"> <a href="/slide/3842269/" title="DISCOVER: Keyword Search in Relational Databases Vagelis Hristidis University of California, San Diego Yannis Papakonstantinou University of California,>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>DISCOVER: Keyword Search in Relational Databases Vagelis Hristidis University of California, San Diego Yannis Papakonstantinou University of California,</p> </div> </a> </div> </div> </div> <div id="CIHAGAIHHVIFGWY" class="AMDBC AMDBCPIKBMDAMBYM sidebar-item uk-text-center uk-margin-bottom"></div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/25/8257752/big_thumb.jpg" title="Date : 2012/10/25 Author : Yosi Mass, Yehoshua Sagiv Source : WSDM’12 Speaker : Er-Gang Liu Advisor : Dr. Jia-ling Koh 1.>" alt="Date : 2012/10/25 Author : Yosi Mass, Yehoshua Sagiv Source : WSDM’12 Speaker : Er-Gang Liu Advisor : Dr. Jia-ling Koh 1."> <a href="/slide/8257752/" title="Date : 2012/10/25 Author : Yosi Mass, Yehoshua Sagiv Source : WSDM’12 Speaker : Er-Gang Liu Advisor : Dr. Jia-ling Koh 1.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Date : 2012/10/25 Author : Yosi Mass, Yehoshua Sagiv Source : WSDM’12 Speaker : Er-Gang Liu Advisor : Dr. Jia-ling Koh 1.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/24/7314451/big_thumb.jpg" title="Mehdi Kargar Aijun An York University, Toronto, Canada Discovering Top-k Teams of Experts with/without a Leader in Social Networks.>" alt="Mehdi Kargar Aijun An York University, Toronto, Canada Discovering Top-k Teams of Experts with/without a Leader in Social Networks."> <a href="/slide/7314451/" title="Mehdi Kargar Aijun An York University, Toronto, Canada Discovering Top-k Teams of Experts with/without a Leader in Social Networks.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Mehdi Kargar Aijun An York University, Toronto, Canada Discovering Top-k Teams of Experts with/without a Leader in Social Networks.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/12/3342405/big_thumb.jpg" title="Efficient IR-Style Keyword Search over Relational Databases Vagelis Hristidis University of California, San Diego Luis Gravano Columbia University Yannis.>" alt="Efficient IR-Style Keyword Search over Relational Databases Vagelis Hristidis University of California, San Diego Luis Gravano Columbia University Yannis."> <a href="/slide/3342405/" title="Efficient IR-Style Keyword Search over Relational Databases Vagelis Hristidis University of California, San Diego Luis Gravano Columbia University Yannis.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Efficient IR-Style Keyword Search over Relational Databases Vagelis Hristidis University of California, San Diego Luis Gravano Columbia University Yannis.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/23/6636446/big_thumb.jpg" title="Keyword Search in Relational Databases Jaehui Park Intelligent Database Systems Lab. Seoul National University 2009. 02. 12.>" alt="Keyword Search in Relational Databases Jaehui Park Intelligent Database Systems Lab. Seoul National University 2009. 02. 12."> <a href="/slide/6636446/" title="Keyword Search in Relational Databases Jaehui Park Intelligent Database Systems Lab. Seoul National University 2009. 02. 12.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Keyword Search in Relational Databases Jaehui Park Intelligent Database Systems Lab. Seoul National University</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/25/7704688/big_thumb.jpg" title="Querying Structured Text in an XML Database By Xuemei Luo.>" alt="Querying Structured Text in an XML Database By Xuemei Luo."> <a href="/slide/7704688/" title="Querying Structured Text in an XML Database By Xuemei Luo.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Querying Structured Text in an XML Database By Xuemei Luo.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/22/6410342/big_thumb.jpg" title="Authors: Bhavana Bharat Dalvi, Meghana Kshirsagar, S. Sudarshan Presented By: Aruna Keyword Search on External Memory Data Graphs.>" alt="Authors: Bhavana Bharat Dalvi, Meghana Kshirsagar, S. Sudarshan Presented By: Aruna Keyword Search on External Memory Data Graphs."> <a href="/slide/6410342/" title="Authors: Bhavana Bharat Dalvi, Meghana Kshirsagar, S. Sudarshan Presented By: Aruna Keyword Search on External Memory Data Graphs.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Authors: Bhavana Bharat Dalvi, Meghana Kshirsagar, S. Sudarshan Presented By: Aruna Keyword Search on External Memory Data Graphs.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/12/3351075/big_thumb.jpg" title="Efficient Keyword Search for Smallest LCAs in XML Database Yu Xu Department of Computer Science & Engineering University of California, San Diego Yannis.>" alt="Efficient Keyword Search for Smallest LCAs in XML Database Yu Xu Department of Computer Science & Engineering University of California, San Diego Yannis."> <a href="/slide/3351075/" title="Efficient Keyword Search for Smallest LCAs in XML Database Yu Xu Department of Computer Science & Engineering University of California, San Diego Yannis.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Efficient Keyword Search for Smallest LCAs in XML Database Yu Xu Department of Computer Science & Engineering University of California, San Diego Yannis.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/18/6128919/big_thumb.jpg" title="Bidirectional Expansion for Keyword Search on Graph Databases Varun Kacholia Shashank Pandit Soumen Chakrabarti S. Sudarshan.>" alt="Bidirectional Expansion for Keyword Search on Graph Databases Varun Kacholia Shashank Pandit Soumen Chakrabarti S. Sudarshan."> <a href="/slide/6128919/" title="Bidirectional Expansion for Keyword Search on Graph Databases Varun Kacholia Shashank Pandit Soumen Chakrabarti S. Sudarshan.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Bidirectional Expansion for Keyword Search on Graph Databases Varun Kacholia Shashank Pandit Soumen Chakrabarti S. Sudarshan.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/15/4734078/big_thumb.jpg" title="Enumerating Large Query Results Benny Kimelfeld IBM Almaden Research Center Sara Cohen The Hebrew University of Jerusalem Yehoshua Sagiv The Hebrew University.>" alt="Enumerating Large Query Results Benny Kimelfeld IBM Almaden Research Center Sara Cohen The Hebrew University of Jerusalem Yehoshua Sagiv The Hebrew University."> <a href="/slide/4734078/" title="Enumerating Large Query Results Benny Kimelfeld IBM Almaden Research Center Sara Cohen The Hebrew University of Jerusalem Yehoshua Sagiv The Hebrew University.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Enumerating Large Query Results Benny Kimelfeld IBM Almaden Research Center Sara Cohen The Hebrew University of Jerusalem Yehoshua Sagiv The Hebrew University.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/26/8666951/big_thumb.jpg" title="Ranking objects based on relationships Computing Top-K over Aggregation Sigmod 2006 Kaushik Chakrabarti et al.>" alt="Ranking objects based on relationships Computing Top-K over Aggregation Sigmod 2006 Kaushik Chakrabarti et al."> <a href="/slide/8666951/" title="Ranking objects based on relationships Computing Top-K over Aggregation Sigmod 2006 Kaushik Chakrabarti et al.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Ranking objects based on relationships Computing Top-K over Aggregation Sigmod 2006 Kaushik Chakrabarti et al.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/15/4839977/big_thumb.jpg" title="Information Retrieval in Practice>" alt="Information Retrieval in Practice"> <a href="/slide/4839977/" title="Information Retrieval in Practice>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Information Retrieval in Practice</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/25/8257722/big_thumb.jpg" title="Q2Semantic: A Lightweight Keyword Interface to Semantic Search Haofen Wang 1, Kang Zhang 1, Qiaoling Liu 1, Thanh Tran 2, and Yong Yu 1 1 Apex Lab, Shanghai.>" alt="Q2Semantic: A Lightweight Keyword Interface to Semantic Search Haofen Wang 1, Kang Zhang 1, Qiaoling Liu 1, Thanh Tran 2, and Yong Yu 1 1 Apex Lab, Shanghai."> <a href="/slide/8257722/" title="Q2Semantic: A Lightweight Keyword Interface to Semantic Search Haofen Wang 1, Kang Zhang 1, Qiaoling Liu 1, Thanh Tran 2, and Yong Yu 1 1 Apex Lab, Shanghai.>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Q2Semantic: A Lightweight Keyword Interface to Semantic Search Haofen Wang 1, Kang Zhang 1, Qiaoling Liu 1, Thanh Tran 2, and Yong Yu 1 1 Apex Lab, Shanghai.</p> </div> </a> </div> </div> </div> <div class="sidebar-item"> <div class="similar-wrapper"> <div class="uk-overlay uk-margin-bottom"> <img src="/70/12089317/big_thumb.jpg" title="Information Retrieval in Practice>" alt="Information Retrieval in Practice"> <a href="/slide/12089317/" title="Information Retrieval in Practice>" class="uk-overlay-area"> <div class="uk-overlay-area-content"> <p>Information Retrieval in Practice</p> </div> </a> </div> </div> </div> <script> var moreSimilarSlides =[" <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/11\/3302053\/big_thumb.jpg\" title=\"Jianxin Li, Chengfei Liu, Rui Zhou Swinburne University of Technology, Australia Wei Wang University of New South Wales, Australia Top-k Keyword Search.>\" alt=\"Jianxin Li, Chengfei Liu, Rui Zhou Swinburne University of Technology, Australia Wei Wang University of New South Wales, Australia Top-k Keyword Search.\">\n <a href=\"\/slide\/3302053\/\" title=\"Jianxin Li, Chengfei Liu, Rui Zhou Swinburne University of Technology, Australia Wei Wang University of New South Wales, Australia Top-k Keyword Search.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Jianxin Li, Chengfei Liu, Rui Zhou Swinburne University of Technology, Australia Wei Wang University of New South Wales, Australia Top-k Keyword Search.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/23\/6825469\/big_thumb.jpg\" title=\"Xpath Query Evaluation. Goal Evaluating an Xpath query against a given document \u2013 To find all matches We will also consider the use of types Complexity.>\" alt=\"Xpath Query Evaluation. Goal Evaluating an Xpath query against a given document \u2013 To find all matches We will also consider the use of types Complexity.\">\n <a href=\"\/slide\/6825469\/\" title=\"Xpath Query Evaluation. Goal Evaluating an Xpath query against a given document \u2013 To find all matches We will also consider the use of types Complexity.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Xpath Query Evaluation. Goal Evaluating an Xpath query against a given document \u2013 To find all matches We will also consider the use of types Complexity.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/11\/3292825\/big_thumb.jpg\" title=\"13\/04\/20151 SPARK: Top- k Keyword Query in Relational Database Wei Wang University of New South Wales Australia.>\" alt=\"13\/04\/20151 SPARK: Top- k Keyword Query in Relational Database Wei Wang University of New South Wales Australia.\">\n <a href=\"\/slide\/3292825\/\" title=\"13\/04\/20151 SPARK: Top- k Keyword Query in Relational Database Wei Wang University of New South Wales Australia.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>13\/04\/20151 SPARK: Top- k Keyword Query in Relational Database Wei Wang University of New South Wales Australia.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/16\/5170466\/big_thumb.jpg\" title=\"XSEarch: A Semantic Search Engine for XML Sara Cohen Jonathan Mamou Yaron Kanza Yehoshua Sagiv Presented at VLDB 2003, Germany.>\" alt=\"XSEarch: A Semantic Search Engine for XML Sara Cohen Jonathan Mamou Yaron Kanza Yehoshua Sagiv Presented at VLDB 2003, Germany.\">\n <a href=\"\/slide\/5170466\/\" title=\"XSEarch: A Semantic Search Engine for XML Sara Cohen Jonathan Mamou Yaron Kanza Yehoshua Sagiv Presented at VLDB 2003, Germany.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>XSEarch: A Semantic Search Engine for XML Sara Cohen Jonathan Mamou Yaron Kanza Yehoshua Sagiv Presented at VLDB 2003, Germany.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/25\/8035691\/big_thumb.jpg\" title=\"Keyword Searching and Browsing in Databases using BANKS Seoyoung Ahn Mar 3, 2005 The University of Texas at Arlington.>\" alt=\"Keyword Searching and Browsing in Databases using BANKS Seoyoung Ahn Mar 3, 2005 The University of Texas at Arlington.\">\n <a href=\"\/slide\/8035691\/\" title=\"Keyword Searching and Browsing in Databases using BANKS Seoyoung Ahn Mar 3, 2005 The University of Texas at Arlington.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Keyword Searching and Browsing in Databases using BANKS Seoyoung Ahn Mar 3, 2005 The University of Texas at Arlington.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/12\/3392019\/big_thumb.jpg\" title=\"Effective Keyword Based Selection of Relational Databases Bei Yu, Guoliang Li, Karen Sollins, Anthony K.H Tung.>\" alt=\"Effective Keyword Based Selection of Relational Databases Bei Yu, Guoliang Li, Karen Sollins, Anthony K.H Tung.\">\n <a href=\"\/slide\/3392019\/\" title=\"Effective Keyword Based Selection of Relational Databases Bei Yu, Guoliang Li, Karen Sollins, Anthony K.H Tung.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Effective Keyword Based Selection of Relational Databases Bei Yu, Guoliang Li, Karen Sollins, Anthony K.H Tung.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/25\/7798794\/big_thumb.jpg\" title=\"Harikrishnan Karunakaran Sulabha Balan CSE 6339. \uf07d Introduction \uf07d Database and Query Model \u25e6 Informal Model \u25e6 Formal Model \u25e6 Query and Answer Model \uf07d>\" alt=\"Harikrishnan Karunakaran Sulabha Balan CSE 6339. \uf07d Introduction \uf07d Database and Query Model \u25e6 Informal Model \u25e6 Formal Model \u25e6 Query and Answer Model \uf07d\">\n <a href=\"\/slide\/7798794\/\" title=\"Harikrishnan Karunakaran Sulabha Balan CSE 6339. \uf07d Introduction \uf07d Database and Query Model \u25e6 Informal Model \u25e6 Formal Model \u25e6 Query and Answer Model \uf07d>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Harikrishnan Karunakaran Sulabha Balan CSE \uf07d Introduction \uf07d Database and Query Model \u25e6 Informal Model \u25e6 Formal Model \u25e6 Query and Answer Model \uf07d<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/16\/5195520\/big_thumb.jpg\" title=\"The community-search problem and how to plan a successful cocktail party Mauro SozioAris Gionis Max Planck Institute, Germany Yahoo! Research, Barcelona.>\" alt=\"The community-search problem and how to plan a successful cocktail party Mauro SozioAris Gionis Max Planck Institute, Germany Yahoo! Research, Barcelona.\">\n <a href=\"\/slide\/5195520\/\" title=\"The community-search problem and how to plan a successful cocktail party Mauro SozioAris Gionis Max Planck Institute, Germany Yahoo! Research, Barcelona.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>The community-search problem and how to plan a successful cocktail party Mauro SozioAris Gionis Max Planck Institute, Germany Yahoo! Research, Barcelona.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/24\/6941655\/big_thumb.jpg\" title=\"Mining Frequent Itemsets with Constraints Takeaki Uno Takeaki Uno National Institute of Informatics, JAPAN Nov\/2005 FJWCP.>\" alt=\"Mining Frequent Itemsets with Constraints Takeaki Uno Takeaki Uno National Institute of Informatics, JAPAN Nov\/2005 FJWCP.\">\n <a href=\"\/slide\/6941655\/\" title=\"Mining Frequent Itemsets with Constraints Takeaki Uno Takeaki Uno National Institute of Informatics, JAPAN Nov\/2005 FJWCP.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Mining Frequent Itemsets with Constraints Takeaki Uno Takeaki Uno National Institute of Informatics, JAPAN Nov\/2005 FJWCP.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/32\/9995534\/big_thumb.jpg\" title=\"Instance Discovery and Schema Matching With Applications to Biological Deep Web Data Integration Tantan Liu, Fan Wang, Gagan Agrawal {liut, wangfa,>\" alt=\"Instance Discovery and Schema Matching With Applications to Biological Deep Web Data Integration Tantan Liu, Fan Wang, Gagan Agrawal {liut, wangfa,\">\n <a href=\"\/slide\/9995534\/\" title=\"Instance Discovery and Schema Matching With Applications to Biological Deep Web Data Integration Tantan Liu, Fan Wang, Gagan Agrawal {liut, wangfa,>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Instance Discovery and Schema Matching With Applications to Biological Deep Web Data Integration Tantan Liu, Fan Wang, Gagan Agrawal {liut, wangfa,<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/31\/9777853\/big_thumb.jpg\" title=\"Keyword Searching and Browsing in Databases using BANKS Charuta Nakhe, Arvind Hulgeri, Gaurav Bhalotia, Soumen Chakrabarti, S. Sudarshan Presented by Sushanth.>\" alt=\"Keyword Searching and Browsing in Databases using BANKS Charuta Nakhe, Arvind Hulgeri, Gaurav Bhalotia, Soumen Chakrabarti, S. Sudarshan Presented by Sushanth.\">\n <a href=\"\/slide\/9777853\/\" title=\"Keyword Searching and Browsing in Databases using BANKS Charuta Nakhe, Arvind Hulgeri, Gaurav Bhalotia, Soumen Chakrabarti, S. Sudarshan Presented by Sushanth.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Keyword Searching and Browsing in Databases using BANKS Charuta Nakhe, Arvind Hulgeri, Gaurav Bhalotia, Soumen Chakrabarti, S. Sudarshan Presented by Sushanth.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/2\/712161\/big_thumb.jpg\" title=\"Answering Approximate Queries over Autonomous Web Databases Xiangfu Meng, Z. M. Ma, and Li Yan College of Information Science and Engineering, Northeastern.>\" alt=\"Answering Approximate Queries over Autonomous Web Databases Xiangfu Meng, Z. M. Ma, and Li Yan College of Information Science and Engineering, Northeastern.\">\n <a href=\"\/slide\/712161\/\" title=\"Answering Approximate Queries over Autonomous Web Databases Xiangfu Meng, Z. M. Ma, and Li Yan College of Information Science and Engineering, Northeastern.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Answering Approximate Queries over Autonomous Web Databases Xiangfu Meng, Z. M. Ma, and Li Yan College of Information Science and Engineering, Northeastern.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/26\/8795800\/big_thumb.jpg\" title=\"ACM SIGMOD International Conference on Management of Data, Beijing, June 14 th, 2007. Keyword Search on Relational Data Streams Alexander Markowetz Yin.>\" alt=\"ACM SIGMOD International Conference on Management of Data, Beijing, June 14 th, 2007. Keyword Search on Relational Data Streams Alexander Markowetz Yin.\">\n <a href=\"\/slide\/8795800\/\" title=\"ACM SIGMOD International Conference on Management of Data, Beijing, June 14 th, 2007. Keyword Search on Relational Data Streams Alexander Markowetz Yin.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>ACM SIGMOD International Conference on Management of Data, Beijing, June 14 th, Keyword Search on Relational Data Streams Alexander Markowetz Yin.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/15\/4804051\/big_thumb.jpg\" title=\"Reasoning and Identifying Relevant Matches for XML Keyword Search Yi Chen Ziyang Liu, Yi Chen Arizona State University.>\" alt=\"Reasoning and Identifying Relevant Matches for XML Keyword Search Yi Chen Ziyang Liu, Yi Chen Arizona State University.\">\n <a href=\"\/slide\/4804051\/\" title=\"Reasoning and Identifying Relevant Matches for XML Keyword Search Yi Chen Ziyang Liu, Yi Chen Arizona State University.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Reasoning and Identifying Relevant Matches for XML Keyword Search Yi Chen Ziyang Liu, Yi Chen Arizona State University.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/25\/7969909\/big_thumb.jpg\" title=\"EASE: An Effective 3-in-1 Keyword Search Method for Unstructured, Semi-structured and Structured Data Cuoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong.>\" alt=\"EASE: An Effective 3-in-1 Keyword Search Method for Unstructured, Semi-structured and Structured Data Cuoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong.\">\n <a href=\"\/slide\/7969909\/\" title=\"EASE: An Effective 3-in-1 Keyword Search Method for Unstructured, Semi-structured and Structured Data Cuoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>EASE: An Effective 3-in-1 Keyword Search Method for Unstructured, Semi-structured and Structured Data Cuoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/23\/6825826\/big_thumb.jpg\" title=\"1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.>\" alt=\"1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.\">\n <a href=\"\/slide\/6825826\/\" title=\"1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/11\/3335251\/big_thumb.jpg\" title=\"Optimizing Join Enumeration in Transformation-based Query Optimizers ANIL SHANBHAG, S. SUDARSHAN IIT BOMBAY VLDB 2014>\" alt=\"Optimizing Join Enumeration in Transformation-based Query Optimizers ANIL SHANBHAG, S. SUDARSHAN IIT BOMBAY VLDB 2014\">\n <a href=\"\/slide\/3335251\/\" title=\"Optimizing Join Enumeration in Transformation-based Query Optimizers ANIL SHANBHAG, S. SUDARSHAN IIT BOMBAY VLDB 2014>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Optimizing Join Enumeration in Transformation-based Query Optimizers ANIL SHANBHAG, S. SUDARSHAN IIT BOMBAY VLDB 2014<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/24\/7576540\/big_thumb.jpg\" title=\"Chapter 2 Architecture of a Search Engine. Search Engine Architecture n A software architecture consists of software components, the interfaces provided.>\" alt=\"Chapter 2 Architecture of a Search Engine. Search Engine Architecture n A software architecture consists of software components, the interfaces provided.\">\n <a href=\"\/slide\/7576540\/\" title=\"Chapter 2 Architecture of a Search Engine. Search Engine Architecture n A software architecture consists of software components, the interfaces provided.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Chapter 2 Architecture of a Search Engine. Search Engine Architecture n A software architecture consists of software components, the interfaces provided.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/19\/5769111\/big_thumb.jpg\" title=\"Overview of Search Engines>\" alt=\"Overview of Search Engines\">\n <a href=\"\/slide\/5769111\/\" title=\"Overview of Search Engines>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Overview of Search Engines<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/16\/5199853\/big_thumb.jpg\" title=\"Identifying Meaningful Return Information for XML Keyword Search Yi Chen Ziyang Liu, Yi Chen Arizona State University.>\" alt=\"Identifying Meaningful Return Information for XML Keyword Search Yi Chen Ziyang Liu, Yi Chen Arizona State University.\">\n <a href=\"\/slide\/5199853\/\" title=\"Identifying Meaningful Return Information for XML Keyword Search Yi Chen Ziyang Liu, Yi Chen Arizona State University.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Identifying Meaningful Return Information for XML Keyword Search Yi Chen Ziyang Liu, Yi Chen Arizona State University.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/3\/1398793\/big_thumb.jpg\" title=\"Toward Scalable Keyword Search over Relational Data Akanksha Baid, Ian Rae, Jiexing Li, AnHai Doan, and Jeffrey Naughton University of Wisconsin VLDB 2010.>\" alt=\"Toward Scalable Keyword Search over Relational Data Akanksha Baid, Ian Rae, Jiexing Li, AnHai Doan, and Jeffrey Naughton University of Wisconsin VLDB 2010.\">\n <a href=\"\/slide\/1398793\/\" title=\"Toward Scalable Keyword Search over Relational Data Akanksha Baid, Ian Rae, Jiexing Li, AnHai Doan, and Jeffrey Naughton University of Wisconsin VLDB 2010.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Toward Scalable Keyword Search over Relational Data Akanksha Baid, Ian Rae, Jiexing Li, AnHai Doan, and Jeffrey Naughton University of Wisconsin VLDB 2010.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/25\/7614608\/big_thumb.jpg\" title=\"Michael Cafarella Alon HalevyNodira Khoussainova University of Washington Google, incUniversity of Washington Data Integration for Relational Web.>\" alt=\"Michael Cafarella Alon HalevyNodira Khoussainova University of Washington Google, incUniversity of Washington Data Integration for Relational Web.\">\n <a href=\"\/slide\/7614608\/\" title=\"Michael Cafarella Alon HalevyNodira Khoussainova University of Washington Google, incUniversity of Washington Data Integration for Relational Web.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Michael Cafarella Alon HalevyNodira Khoussainova University of Washington Google, incUniversity of Washington Data Integration for Relational Web.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/14\/4463954\/big_thumb.jpg\" title=\"Graduate Center\/City University of New York University of Helsinki FINDING OPTIMAL BAYESIAN NETWORK STRUCTURES WITH CONSTRAINTS LEARNED FROM DATA Xiannian.>\" alt=\"Graduate Center\/City University of New York University of Helsinki FINDING OPTIMAL BAYESIAN NETWORK STRUCTURES WITH CONSTRAINTS LEARNED FROM DATA Xiannian.\">\n <a href=\"\/slide\/4463954\/\" title=\"Graduate Center\/City University of New York University of Helsinki FINDING OPTIMAL BAYESIAN NETWORK STRUCTURES WITH CONSTRAINTS LEARNED FROM DATA Xiannian.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Graduate Center\/City University of New York University of Helsinki FINDING OPTIMAL BAYESIAN NETWORK STRUCTURES WITH CONSTRAINTS LEARNED FROM DATA Xiannian.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/11\/3245227\/big_thumb.jpg\" title=\"A General Algorithm for Subtree Similarity-Search The Hebrew University of Jerusalem ICDE 2014, Chicago, USA Sara Cohen, Nerya Or 1.>\" alt=\"A General Algorithm for Subtree Similarity-Search The Hebrew University of Jerusalem ICDE 2014, Chicago, USA Sara Cohen, Nerya Or 1.\">\n <a href=\"\/slide\/3245227\/\" title=\"A General Algorithm for Subtree Similarity-Search The Hebrew University of Jerusalem ICDE 2014, Chicago, USA Sara Cohen, Nerya Or 1.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>A General Algorithm for Subtree Similarity-Search The Hebrew University of Jerusalem ICDE 2014, Chicago, USA Sara Cohen, Nerya Or 1.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/14\/4499600\/big_thumb.jpg\" title=\"SPARK: Top-k Keyword Query in Relational Databases Yi Luo, Xuemin Lin, Wei Wang, Xiaofang Zhou Univ. of New South Wales, Univ. of Queensland SIGMOD 2007.>\" alt=\"SPARK: Top-k Keyword Query in Relational Databases Yi Luo, Xuemin Lin, Wei Wang, Xiaofang Zhou Univ. of New South Wales, Univ. of Queensland SIGMOD 2007.\">\n <a href=\"\/slide\/4499600\/\" title=\"SPARK: Top-k Keyword Query in Relational Databases Yi Luo, Xuemin Lin, Wei Wang, Xiaofang Zhou Univ. of New South Wales, Univ. of Queensland SIGMOD 2007.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>SPARK: Top-k Keyword Query in Relational Databases Yi Luo, Xuemin Lin, Wei Wang, Xiaofang Zhou Univ. of New South Wales, Univ. of Queensland SIGMOD 2007.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/25\/8124620\/big_thumb.jpg\" title=\"An Efficient Algorithm for Enumerating Pseudo Cliques Dec\/18\/2007 ISAAC, Sendai Takeaki Uno National Institute of Informatics & The Graduate University.>\" alt=\"An Efficient Algorithm for Enumerating Pseudo Cliques Dec\/18\/2007 ISAAC, Sendai Takeaki Uno National Institute of Informatics & The Graduate University.\">\n <a href=\"\/slide\/8124620\/\" title=\"An Efficient Algorithm for Enumerating Pseudo Cliques Dec\/18\/2007 ISAAC, Sendai Takeaki Uno National Institute of Informatics & The Graduate University.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>An Efficient Algorithm for Enumerating Pseudo Cliques Dec\/18\/2007 ISAAC, Sendai Takeaki Uno National Institute of Informatics & The Graduate University.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/20\/6007810\/big_thumb.jpg\" title=\"Search is not only about the Web An Overview on Printed Documents Search and Patent Search Walid Magdy Centre for Next Generation Localisation School of.>\" alt=\"Search is not only about the Web An Overview on Printed Documents Search and Patent Search Walid Magdy Centre for Next Generation Localisation School of.\">\n <a href=\"\/slide\/6007810\/\" title=\"Search is not only about the Web An Overview on Printed Documents Search and Patent Search Walid Magdy Centre for Next Generation Localisation School of.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Search is not only about the Web An Overview on Printed Documents Search and Patent Search Walid Magdy Centre for Next Generation Localisation School of.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/25\/7798640\/big_thumb.jpg\" title=\"Towards Robust Indexing for Ranked Queries Dong Xin, Chen Chen, Jiawei Han Department of Computer Science University of Illinois at Urbana-Champaign VLDB.>\" alt=\"Towards Robust Indexing for Ranked Queries Dong Xin, Chen Chen, Jiawei Han Department of Computer Science University of Illinois at Urbana-Champaign VLDB.\">\n <a href=\"\/slide\/7798640\/\" title=\"Towards Robust Indexing for Ranked Queries Dong Xin, Chen Chen, Jiawei Han Department of Computer Science University of Illinois at Urbana-Champaign VLDB.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Towards Robust Indexing for Ranked Queries Dong Xin, Chen Chen, Jiawei Han Department of Computer Science University of Illinois at Urbana-Champaign VLDB.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/28\/9287731\/big_thumb.jpg\" title=\"Top-K Generation of Integrated Schemas Based on Directed and Weighted Correspondences by Ahmed Radwan, Lucian Popa, Ioana R. Stanoi, Akmal Younis Presented.>\" alt=\"Top-K Generation of Integrated Schemas Based on Directed and Weighted Correspondences by Ahmed Radwan, Lucian Popa, Ioana R. Stanoi, Akmal Younis Presented.\">\n <a href=\"\/slide\/9287731\/\" title=\"Top-K Generation of Integrated Schemas Based on Directed and Weighted Correspondences by Ahmed Radwan, Lucian Popa, Ioana R. Stanoi, Akmal Younis Presented.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Top-K Generation of Integrated Schemas Based on Directed and Weighted Correspondences by Ahmed Radwan, Lucian Popa, Ioana R. Stanoi, Akmal Younis Presented.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/33\/7433643\/big_thumb.jpg\" title=\"Automated Creation of a Forms- based Database Query Interface Magesh Jayapandian H.V. Jagadish Univ. of Michigan VLDB 2008 1.>\" alt=\"Automated Creation of a Forms- based Database Query Interface Magesh Jayapandian H.V. Jagadish Univ. of Michigan VLDB 2008 1.\">\n <a href=\"\/slide\/7433643\/\" title=\"Automated Creation of a Forms- based Database Query Interface Magesh Jayapandian H.V. Jagadish Univ. of Michigan VLDB 2008 1.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Automated Creation of a Forms- based Database Query Interface Magesh Jayapandian H.V. Jagadish Univ. of Michigan VLDB<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/12\/3422376\/big_thumb.jpg\" title=\"Fast Algorithms For Hierarchical Range Histogram Constructions>\" alt=\"Fast Algorithms For Hierarchical Range Histogram Constructions\">\n <a href=\"\/slide\/3422376\/\" title=\"Fast Algorithms For Hierarchical Range Histogram Constructions>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Fast Algorithms For Hierarchical Range Histogram Constructions<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/16\/5187976\/big_thumb.jpg\" title=\"Query Biased Snippet Generation in XML Search Yi Chen Yu Huang, Ziyang Liu, Yi Chen Arizona State University.>\" alt=\"Query Biased Snippet Generation in XML Search Yi Chen Yu Huang, Ziyang Liu, Yi Chen Arizona State University.\">\n <a href=\"\/slide\/5187976\/\" title=\"Query Biased Snippet Generation in XML Search Yi Chen Yu Huang, Ziyang Liu, Yi Chen Arizona State University.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Query Biased Snippet Generation in XML Search Yi Chen Yu Huang, Ziyang Liu, Yi Chen Arizona State University.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/25\/7777680\/big_thumb.jpg\" title=\"RESOURCES, TRADE-OFFS, AND LIMITATIONS Group 5 8\/27\/2014.>\" alt=\"RESOURCES, TRADE-OFFS, AND LIMITATIONS Group 5 8\/27\/2014.\">\n <a href=\"\/slide\/7777680\/\" title=\"RESOURCES, TRADE-OFFS, AND LIMITATIONS Group 5 8\/27\/2014.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>RESOURCES, TRADE-OFFS, AND LIMITATIONS Group 5 8\/27\/2014.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/15\/4835888\/big_thumb.jpg\" title=\"Evaluating Search Engine>\" alt=\"Evaluating Search Engine\">\n <a href=\"\/slide\/4835888\/\" title=\"Evaluating Search Engine>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Evaluating Search Engine<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/28\/9400712\/big_thumb.jpg\" title=\"Internal and External Sorting External Searching>\" alt=\"Internal and External Sorting External Searching\">\n <a href=\"\/slide\/9400712\/\" title=\"Internal and External Sorting External Searching>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Internal and External Sorting External Searching<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/16\/4909265\/big_thumb.jpg\" title=\"Interactive Generation of Integrated Schemas Laura Chiticariu et al. Presented by: Meher Talat Shaikh.>\" alt=\"Interactive Generation of Integrated Schemas Laura Chiticariu et al. Presented by: Meher Talat Shaikh.\">\n <a href=\"\/slide\/4909265\/\" title=\"Interactive Generation of Integrated Schemas Laura Chiticariu et al. Presented by: Meher Talat Shaikh.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Interactive Generation of Integrated Schemas Laura Chiticariu et al. Presented by: Meher Talat Shaikh.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/12\/3403891\/big_thumb.jpg\" title=\"Best-Effort Top-k Query Processing Under Budgetary Constraints>\" alt=\"Best-Effort Top-k Query Processing Under Budgetary Constraints\">\n <a href=\"\/slide\/3403891\/\" title=\"Best-Effort Top-k Query Processing Under Budgetary Constraints>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Best-Effort Top-k Query Processing Under Budgetary Constraints<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/16\/4973490\/big_thumb.jpg\" title=\"Ph.D. DefenceUniversity of Alberta1 Approximation Algorithms for Frequency Related Query Processing on Streaming Data Presented by Fan Deng Supervisor:>\" alt=\"Ph.D. DefenceUniversity of Alberta1 Approximation Algorithms for Frequency Related Query Processing on Streaming Data Presented by Fan Deng Supervisor:\">\n <a href=\"\/slide\/4973490\/\" title=\"Ph.D. DefenceUniversity of Alberta1 Approximation Algorithms for Frequency Related Query Processing on Streaming Data Presented by Fan Deng Supervisor:>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Ph.D. DefenceUniversity of Alberta1 Approximation Algorithms for Frequency Related Query Processing on Streaming Data Presented by Fan Deng Supervisor:<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/27\/9122035\/big_thumb.jpg\" title=\"Mining Dependency Relations for Query Expansion in Passage Retrieval Renxu Sun, Chai-Huat Ong, Tat-Seng Chua National University of Singapore SIGIR2006.>\" alt=\"Mining Dependency Relations for Query Expansion in Passage Retrieval Renxu Sun, Chai-Huat Ong, Tat-Seng Chua National University of Singapore SIGIR2006.\">\n <a href=\"\/slide\/9122035\/\" title=\"Mining Dependency Relations for Query Expansion in Passage Retrieval Renxu Sun, Chai-Huat Ong, Tat-Seng Chua National University of Singapore SIGIR2006.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Mining Dependency Relations for Query Expansion in Passage Retrieval Renxu Sun, Chai-Huat Ong, Tat-Seng Chua National University of Singapore SIGIR2006.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/26\/8703350\/big_thumb.jpg\" title=\"\u05d0\u05d9\u05da \u05e2\u05d5\u05e0\u05d9\u05dd \u05e2\u05dc \u05e9\u05d0\u05d9\u05dc\u05ea\u05d4, \u05db\u05e9\u05d4\u05ea\u05d5\u05e6\u05d0\u05d4 \u05d2\u05d3\u05d5\u05dc\u05d4 \u05de\u05d0\u05d3? \u05e9\u05e8\u05d4 \u05db\u05d4\u05df \u05d1\u05d9\u05ea \u05d4\u05e1\u05e4\u05e8 \u05dc\u05d4\u05e0\u05d3\u05e1\u05d4 \u05d5\u05dc\u05de\u05d3\u05e2\u05d9 \u05d4\u05de\u05d7\u05e9\u05d1 \u05e2\u05e9 \u05e8\u05d7\u05dc \u05d5\u05e1\u05dc\u05d9\u05dd \u05d1\u05e0\u05d9\u05df \u05e2\u05e9 \u05e8\u05d7\u05dc \u05d5\u05e1\u05dc\u05d9\u05dd \u05d1\u05e0\u05d9\u05df.>\" alt=\"\u05d0\u05d9\u05da \u05e2\u05d5\u05e0\u05d9\u05dd \u05e2\u05dc \u05e9\u05d0\u05d9\u05dc\u05ea\u05d4, \u05db\u05e9\u05d4\u05ea\u05d5\u05e6\u05d0\u05d4 \u05d2\u05d3\u05d5\u05dc\u05d4 \u05de\u05d0\u05d3? \u05e9\u05e8\u05d4 \u05db\u05d4\u05df \u05d1\u05d9\u05ea \u05d4\u05e1\u05e4\u05e8 \u05dc\u05d4\u05e0\u05d3\u05e1\u05d4 \u05d5\u05dc\u05de\u05d3\u05e2\u05d9 \u05d4\u05de\u05d7\u05e9\u05d1 \u05e2\u05e9 \u05e8\u05d7\u05dc \u05d5\u05e1\u05dc\u05d9\u05dd \u05d1\u05e0\u05d9\u05df \u05e2\u05e9 \u05e8\u05d7\u05dc \u05d5\u05e1\u05dc\u05d9\u05dd \u05d1\u05e0\u05d9\u05df.\">\n <a href=\"\/slide\/8703350\/\" title=\"\u05d0\u05d9\u05da \u05e2\u05d5\u05e0\u05d9\u05dd \u05e2\u05dc \u05e9\u05d0\u05d9\u05dc\u05ea\u05d4, \u05db\u05e9\u05d4\u05ea\u05d5\u05e6\u05d0\u05d4 \u05d2\u05d3\u05d5\u05dc\u05d4 \u05de\u05d0\u05d3? \u05e9\u05e8\u05d4 \u05db\u05d4\u05df \u05d1\u05d9\u05ea \u05d4\u05e1\u05e4\u05e8 \u05dc\u05d4\u05e0\u05d3\u05e1\u05d4 \u05d5\u05dc\u05de\u05d3\u05e2\u05d9 \u05d4\u05de\u05d7\u05e9\u05d1 \u05e2\u05e9 \u05e8\u05d7\u05dc \u05d5\u05e1\u05dc\u05d9\u05dd \u05d1\u05e0\u05d9\u05df \u05e2\u05e9 \u05e8\u05d7\u05dc \u05d5\u05e1\u05dc\u05d9\u05dd \u05d1\u05e0\u05d9\u05df.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>\u05d0\u05d9\u05da \u05e2\u05d5\u05e0\u05d9\u05dd \u05e2\u05dc \u05e9\u05d0\u05d9\u05dc\u05ea\u05d4, \u05db\u05e9\u05d4\u05ea\u05d5\u05e6\u05d0\u05d4 \u05d2\u05d3\u05d5\u05dc\u05d4 \u05de\u05d0\u05d3? \u05e9\u05e8\u05d4 \u05db\u05d4\u05df \u05d1\u05d9\u05ea \u05d4\u05e1\u05e4\u05e8 \u05dc\u05d4\u05e0\u05d3\u05e1\u05d4 \u05d5\u05dc\u05de\u05d3\u05e2\u05d9 \u05d4\u05de\u05d7\u05e9\u05d1 \u05e2\"\u05e9 \u05e8\u05d7\u05dc \u05d5\u05e1\u05dc\u05d9\u05dd \u05d1\u05e0\u05d9\u05df \u05e2\"\u05e9 \u05e8\u05d7\u05dc \u05d5\u05e1\u05dc\u05d9\u05dd \u05d1\u05e0\u05d9\u05df.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/11\/3257684\/big_thumb.jpg\" title=\"Processing XML Keyword Search by Constructing Effective Structured Queries Jianxin Li, Chengfei Liu, Rui Zhou and Bo Ning Swinburne University of Technology,>\" alt=\"Processing XML Keyword Search by Constructing Effective Structured Queries Jianxin Li, Chengfei Liu, Rui Zhou and Bo Ning Swinburne University of Technology,\">\n <a href=\"\/slide\/3257684\/\" title=\"Processing XML Keyword Search by Constructing Effective Structured Queries Jianxin Li, Chengfei Liu, Rui Zhou and Bo Ning Swinburne University of Technology,>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Processing XML Keyword Search by Constructing Effective Structured Queries Jianxin Li, Chengfei Liu, Rui Zhou and Bo Ning Swinburne University of Technology,<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/25\/8080858\/big_thumb.jpg\" title=\"CS 533 Information Retrieval Systems. \uf0a8 Introduction \uf0a8 Connectivity Analysis \uf0a1 Kleinberg\u2019s Algorithm \uf0a1 Problems Encountered \uf0a8 Improved Connectivity Analysis.>\" alt=\"CS 533 Information Retrieval Systems. \uf0a8 Introduction \uf0a8 Connectivity Analysis \uf0a1 Kleinberg\u2019s Algorithm \uf0a1 Problems Encountered \uf0a8 Improved Connectivity Analysis.\">\n <a href=\"\/slide\/8080858\/\" title=\"CS 533 Information Retrieval Systems. \uf0a8 Introduction \uf0a8 Connectivity Analysis \uf0a1 Kleinberg\u2019s Algorithm \uf0a1 Problems Encountered \uf0a8 Improved Connectivity Analysis.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>CS 533 Information Retrieval Systems. \uf0a8 Introduction \uf0a8 Connectivity Analysis \uf0a1 Kleinberg\u2019s Algorithm \uf0a1 Problems Encountered \uf0a8 Improved Connectivity Analysis.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/25\/7638087\/big_thumb.jpg\" title=\"Ontology-Driven Automatic Entity Disambiguation in Unstructured Text Jed Hassell.>\" alt=\"Ontology-Driven Automatic Entity Disambiguation in Unstructured Text Jed Hassell.\">\n <a href=\"\/slide\/7638087\/\" title=\"Ontology-Driven Automatic Entity Disambiguation in Unstructured Text Jed Hassell.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Ontology-Driven Automatic Entity Disambiguation in Unstructured Text Jed Hassell.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/24\/7350200\/big_thumb.jpg\" title=\"DBXplorer: A System for Keyword- Based Search over Relational Databases Sanjay Agrawal Surajit Chaudhuri Gautam Das Presented by Bhushan Pachpande.>\" alt=\"DBXplorer: A System for Keyword- Based Search over Relational Databases Sanjay Agrawal Surajit Chaudhuri Gautam Das Presented by Bhushan Pachpande.\">\n <a href=\"\/slide\/7350200\/\" title=\"DBXplorer: A System for Keyword- Based Search over Relational Databases Sanjay Agrawal Surajit Chaudhuri Gautam Das Presented by Bhushan Pachpande.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>DBXplorer: A System for Keyword- Based Search over Relational Databases Sanjay Agrawal Surajit Chaudhuri Gautam Das Presented by Bhushan Pachpande.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/20\/5957941\/big_thumb.jpg\" title=\"Improved results for a memory allocation problem Rob van Stee University of Karlsruhe Germany Leah Epstein University of Haifa Israel WADS 2007 WAOA 2007.>\" alt=\"Improved results for a memory allocation problem Rob van Stee University of Karlsruhe Germany Leah Epstein University of Haifa Israel WADS 2007 WAOA 2007.\">\n <a href=\"\/slide\/5957941\/\" title=\"Improved results for a memory allocation problem Rob van Stee University of Karlsruhe Germany Leah Epstein University of Haifa Israel WADS 2007 WAOA 2007.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Improved results for a memory allocation problem Rob van Stee University of Karlsruhe Germany Leah Epstein University of Haifa Israel WADS 2007 WAOA 2007.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/25\/7723149\/big_thumb.jpg\" title=\"Diversified Top-k Graph Pattern Matching 1 Yinghui Wu UC Santa Barbara Wenfei Fan University of Edinburgh Southwest Jiaotong University Xin Wang.>\" alt=\"Diversified Top-k Graph Pattern Matching 1 Yinghui Wu UC Santa Barbara Wenfei Fan University of Edinburgh Southwest Jiaotong University Xin Wang.\">\n <a href=\"\/slide\/7723149\/\" title=\"Diversified Top-k Graph Pattern Matching 1 Yinghui Wu UC Santa Barbara Wenfei Fan University of Edinburgh Southwest Jiaotong University Xin Wang.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Diversified Top-k Graph Pattern Matching 1 Yinghui Wu UC Santa Barbara Wenfei Fan University of Edinburgh Southwest Jiaotong University Xin Wang.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/32\/9811509\/big_thumb.jpg\" title=\"Efficient Discovery of XML Data Redundancies Cong Yu and H. V. Jagadish University of Michigan, Ann Arbor - VLDB 2006, Seoul, Korea September 12 th, 2006.>\" alt=\"Efficient Discovery of XML Data Redundancies Cong Yu and H. V. Jagadish University of Michigan, Ann Arbor - VLDB 2006, Seoul, Korea September 12 th, 2006.\">\n <a href=\"\/slide\/9811509\/\" title=\"Efficient Discovery of XML Data Redundancies Cong Yu and H. V. Jagadish University of Michigan, Ann Arbor - VLDB 2006, Seoul, Korea September 12 th, 2006.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Efficient Discovery of XML Data Redundancies Cong Yu and H. V. Jagadish University of Michigan, Ann Arbor - VLDB 2006, Seoul, Korea September 12 th, 2006.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/16\/5078730\/big_thumb.jpg\" title=\"Learning to Advertise. Introduction Advertising on the Internet = $$$ \u2013Especially search advertising and web page advertising Problem: \u2013Selecting ads.>\" alt=\"Learning to Advertise. Introduction Advertising on the Internet = $$$ \u2013Especially search advertising and web page advertising Problem: \u2013Selecting ads.\">\n <a href=\"\/slide\/5078730\/\" title=\"Learning to Advertise. Introduction Advertising on the Internet = $$$ \u2013Especially search advertising and web page advertising Problem: \u2013Selecting ads.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Learning to Advertise. Introduction Advertising on the Internet = $$$ \u2013Especially search advertising and web page advertising Problem: \u2013Selecting ads.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/25\/8275682\/big_thumb.jpg\" title=\"GUIDED BY DR. A. J. AGRAWAL Search Engine By Chetan R. Rathod.>\" alt=\"GUIDED BY DR. A. J. AGRAWAL Search Engine By Chetan R. Rathod.\">\n <a href=\"\/slide\/8275682\/\" title=\"GUIDED BY DR. A. J. AGRAWAL Search Engine By Chetan R. Rathod.>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>GUIDED BY DR. A. J. AGRAWAL Search Engine By Chetan R. Rathod.<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"," <div class=\"sidebar-item\">\n <div class=\"similar-wrapper\">\n <div class=\"uk-overlay uk-margin-bottom\">\n <img src=\"\/20\/6012545\/big_thumb.jpg\" title=\"Information Retrieval in Practice>\" alt=\"Information Retrieval in Practice\">\n <a href=\"\/slide\/6012545\/\" title=\"Information Retrieval in Practice>\" class=\"uk-overlay-area\">\n <div class=\"uk-overlay-area-content\">\n <p>Information Retrieval in Practice<\/p>\n <\/div>\n <\/a>\n <\/div>\n <\/div>\n <\/div>"]; </script> </div> </div> <div class="uk-width-4-4" id="bot-similar-bl"> <div class="uk-margin-bottom uk-panel uk-panel-box uk-panel-box-secondary"> <div id="bottom-similars" class="uk-grid"> <div class="heading uk-margin-bottom"> <p class="tm-text-dark uk-h3"> <span class="uk-icon-list uk-margin-small-right"></span>Similar presentations </p> <hr> </div> </div> </div> </div> </div> </div> </div> </section> </div><!-- .assets --> <script type="text/javascript"> var embed_template = '<div style="width:{width}px"> <strong style="display:block;margin:12px 0 4px"><a href="'+(document.location.toString().replace(/(\?|\#).*$/, ''))+'" title="The Selim and Rachel Benin School of Engineering and Computer Science Keyword Proximity Search in Complex Data Graphs Konstantin Golenberg Benny Kimelfeld." target="_blank">The Selim and Rachel Benin School of Engineering and Computer Science Keyword Proximity Search in Complex Data Graphs Konstantin Golenberg Benny Kimelfeld.</a></strong><iframe src="http://player.slideplayer.com/2/685974/" width="{width}" height="{height}" frameborder="0" marginwidth="0" marginheight="0" scrolling="no" style="border:1px solid #CCC;border-width:1px 1px 0" allowfullscreen></iframe><div style="padding:5px 0 12px"></div></div>'; </script> <div class="tm-container tm-grey" > <div class="uk-container uk-container-center uk-width-large-3-10 uk-h1" style="opacity: 0 ;display:none; font-weight: 300;" id="next_slide_prefetcher_progressbar" > <div class="uk-grid uk-text-center"> <div style="width: 100%;"> Presentation is loading. Please wait.... <br> <img src="/static/blue_design/img/prefetch2.gif"> <div id="next_slide_prefetcher_progressbar_done" style="width: 100%; display: none"> OK<br> <div class="uk-h3"> <br> Mehdi Kargar Aijun An York University, Toronto, Canada Keyword Search in Graphs: Finding r-cliques. </div> </div> <br><br> </div> </div> </div> </div> <div id="footer" class="tm-container tm-dark"> <div class="uk-container uk-container-center"> <div class="uk-navbar"> <div class="uk-navbar-nav"> <div class="uk-float-right uk-margin uk-margin-large-left" id="about-project"> <h5 class="uk-margin-remove">About project</h5> <a href="/support/project/" class="uk-text-small">SlidePlayer</a><br> <a href="/support/terms/" class="uk-text-small">Terms of Service</a> </div> <div class="uk-float-right uk-margin uk-margin-large-left"> <h5 class="uk-margin-remove">Feedback</h5> <a href="/support/privacy/" class="uk-text-small">Privacy Policy</a><br> <a href="/support/feedback/" class="uk-text-small">Feedback</a> </div> <div class="uk-float-left copyright"> <p class="uk-text-small uk-margin-top">© 2017 SlidePlayer.com Inc. <br />All rights reserved.</p> </div> </div> <div class="uk-navbar-flip"> <div class="uk-navbar-nav"> <div class="uk-navbar-content"> <form method="get" action="/search/" id="search_form" class="search_form uk-form uk-margin-top uk-display-inline-block"> <input type="text" required="required" name="q" id="search_query_bottom" value="" placeholder="Search..." autocomplete="off" class="tm-form-width-footer"> <button class="uk-button uk-button-primary">Search</button> </form> </div> </div> </div> </div> </div> </div> <div id="ads_text">Ads by Google</div> <!--<script src="/static/js/--><!--/total_blue.js" type="text/javascript"></script>--> <script> function loadScript(url, callback) { var head; if (typeof(document.getElementsByTagName)!='undefined' && document.getElementsByTagName('head') && document.getElementsByTagName('head')[0]) { head = document.getElementsByTagName('head')[0]; } else { if (typeof(setTimeout)=='undefined') { window.onerror("setTimeout is undefined on function loadScript", '[system]'); callback(2, url); return; } setTimeout(function() { loadScript(url, callback); }, 100); return; } var script = document.createElement('script'); script.type = 'text/javascript'; script.src = url; if (typeof(callback)!='undefined' && typeof(script.onload)!='undefined') { script.onload = function() { callback(0, url); }; } if (typeof(script.async)!='undefined') { script.async = true; } if (typeof(callback)!='undefined' && typeof(script.onerror)!='undefined') { script.onerror = function(){ callback(1, url); }; } head.appendChild(script); } window.onerror = function (msg, file, line, column, errorObj) { var u = 'undefined'; if (typeof(file) == u) { return; } if (file != '[system]') { if (!file || msg == "Script error." || msg == 'Script error') { return; } if (typeof(file.indexOf) != u && file.indexOf(document.domain) == -1) { return; } if (typeof(file.substr) != u && file.substr(0, 4) != 'http') { return; } if (typeof(file.substring) != u && file.substring(0, 4) != 'http') { return; } } var data = { 'url' : document.location.toString(), 'page_id' : '2', 'design_id':3, 'l' : navigator.language, 'p' : navigator.platform }; if (typeof(msg) != u) { if (typeof(errorObj) != u && typeof(errorObj.stack) != u) { msg += ' ' + errorObj.stack; } data.msg = msg; } if (typeof(file) !== u) { data.file = file; } if (typeof(line) !== u) { data.line = line; } if (typeof(column) !== u) { data.column = column; } if (typeof(page_data) !== u && page_data.req_id) { data.req_id = page_data.req_id; } if (typeof(page_data) !== u && page_data.rev) { data.rev = page_data.rev; } var img = new Image(), uri = ''; for (var index in data) { uri += index + '=' + encodeURIComponent(data[index]) + '&'; } img.src = 'http://slideplayer.com/cache/' + Math.random() + '/report/pixel.gif?type=js_error&domain_id=1&' + uri; } var u = 'undefined'; if (typeof(JSON)==u || typeof(JSON.stringify)==u) { document.write('<scr'+'ipt src="http://slideplayer.com/static/js/json.js" type="text/javascript"><'+'/'+'s'+'cript>'); } if (typeof(Object.keys)==u || typeof(Object.toString)==u || typeof(String.prototype.indexOf)==u || navigator.userAgent.toString().match(/(MSIE|Opera|Firefox\/3\.|Edge|Trident|Chrome\/1\d+\.|OPR\/[123]|WOW64|NokiaBrowser)/i) || navigator.platform.toString().match(/(Win32|Linux armv7l)/)) { document.write('<scr'+'ipt src="http://slideplayer.com/cloud/js/es5-shim.js" type="text/javascript"><'+'/'+'s'+'cript>'); } var page_data = {"page_id":2,"domain_id":1,"design_id":3,"rev":"39db","window_load":0,"host":"slideplayer.com","mapper_key":"fd3cc915921a5"}; page_data.req_id = Math.abs(Math.round(Math.random() * 9007199254740990)); page_data.is_bot = 0; page_data.window_id = (function () { var i, w=0, rw = 0, b, wins = {"1": [0, 800], "5": [801, 1200], "11": [1201, 1300], "12": [1301, 20000]}; var xScroll, yScroll, pageHeight, pageWidth; if (window.innerHeight && window.scrollMaxY) { xScroll = document.body.scrollWidth; yScroll = window.innerHeight + window.scrollMaxY; } else if (document.body.scrollHeight > document.body.offsetHeight){ xScroll = document.body.scrollWidth; yScroll = document.body.scrollHeight; } else if (document.documentElement && document.documentElement.scrollHeight > document.documentElement.offsetHeight){ xScroll = document.documentElement.scrollWidth; yScroll = document.documentElement.scrollHeight; } else { if (typeof(document.body.offsetWidth)=='undefined' || typeof(document.body.offsetHeight)=='undefined') { xScroll = 0; yScroll = 0; } else { xScroll = document.body.offsetWidth; yScroll = document.body.offsetHeight; } } var windowWidth, windowHeight; if (self.innerHeight) { windowWidth = self.innerWidth; windowHeight = self.innerHeight; } else if (document.documentElement && document.documentElement.clientHeight) { windowWidth = document.documentElement.clientWidth; windowHeight = document.documentElement.clientHeight; } else if (document.body) { windowWidth = document.body.clientWidth; windowHeight = document.body.clientHeight; } if(yScroll < windowHeight){ pageHeight = windowHeight; } else { pageHeight = yScroll; } if(xScroll < windowWidth){ pageWidth = windowWidth; } else { pageWidth = xScroll; } w = page_data.pageWidth = pageWidth; page_data.pageHeight = pageHeight; if (w > 1300) { return 12; } for (i=1; i<12; i++) { if (wins.hasOwnProperty(i)) { b = wins[i]; if (w >= b[0] && w <= b[1]) { rw = i; } } } return rw; }()); if (typeof(setTimeout)==u || typeof(window.setTimeout)==u || ! navigator.userAgent || ! navigator.platform) { window.onerror('user bot detected???', '[system]'); page_data.is_bot = 1; } else { (function(){ var img = new Image(); img.src = 'http://slideplayer.com/cache/'+Math.random()+'/report/pixel.gif?type=pageview&domain_id=1&page_id=2&design_id=3&l='+encodeURIComponent(navigator.language)+'&p='+encodeURIComponent(navigator.platform)+'&req_id='+page_data.req_id+'&url='+encodeURIComponent(document.location); }()); } var js_loader = { counter_loading_scripts : 0, object_load_script : function(obj, urls_stack, callback) { var first_url = urls_stack[0]; // if (! callback) { // js_loader.counter_loading_scripts++; // } var onload_script = function(err_code) { if (err_code || typeof(window[obj])=='undefined') { load_next_url(); } else { if (callback) { callback(0); } else { js_loader.counter_loading_scripts--; js_loader.onload(); } } }; var load_next_url = function() { var url = urls_stack.splice(0,1)[0]; if (typeof(url)=='undefined' || ! url) { //window.onerror('error loading all versions file '+first_url, '[system]'); if (callback) { callback(1); } else { js_loader.counter_loading_scripts--; js_loader.onload(); } } else { window.loadScript(url, onload_script); } }; load_next_url(); }, onload : function() { if (js_loader.counter_loading_scripts > 0) { return; } if (typeof(window.on_load_jquery)!='undefined' && window.on_load_jquery) { window.on_load_jquery(); } else { window.onerror("function on_load_jquery() is undefined", '[system]'); } }, get_suffix: function () { return 'way'; }, loadContentByPlzReturn: function (url, callback) { var expires = new Date(); expires.setSeconds(expires.getSeconds() + 5); document.cookie = 'plz_return=' + url + '; expires=' + expires.toUTCString() + "; domain=." + document.domain.toString().replace(/^www\./i, '') + '; path=' + window.location.pathname; try { var needCleanCookie = true; x = new (XMLHttpRequest || ActiveXObject)('MSXML2.XMLHTTP.3.0'); x.open('POST', window.location, 1); x.setRequestHeader('X-Requested-With', 'XMLHttpRequest'); x.setRequestHeader('Content-type', 'application/x-www-form-urlencoded'); x.onreadystatechange = function () { if (needCleanCookie && x.readyState > 1) { needCleanCookie = false; document.cookie = "plz_return=133" + "; expires=Thu, 01 Jan 1970 00:00:01 GMT" + "; domain=." + document.domain.toString().replace(/^www\./i, '') + '; path= ' + window.location.pathname; } x.readyState > 3 && callback && callback(x.responseText, x); }; x.send([]); } catch (e) { console.log(e); } }, loadScript: function (urlPostfix) { if (page_data.page_id > 0 && !page_data.is_bot) { var d = new Date(), h = d.getHours(), day = d.getDate(), m = d.getMonth(); var surls = [], uriRealPart = '/1_' + page_data.window_id + '_2_3' + urlPostfix; surls.push('http://slideplayer.com/static/' + js_loader.get_suffix() + '/' + day + '' + h + uriRealPart + '.js'); surls.push('http://slideplayer.com/static/' + js_loader.get_suffix() + '/10' + uriRealPart + '.js'); js_loader.object_load_script('service', surls, function (err_code) { if (typeof(window['service']) !== 'undefined' && window['service'].show_after_load) { window['service'].show_after_load(); } else { if (urlPostfix === '') { uriRealPart += '_b'; window.force_service_mode = 1; } js_loader.loadContentByPlzReturn( '/static/' + js_loader.get_suffix() + '/00042' + uriRealPart + '.js' , function (responseText, xhr) { if (xhr.status !== 200) { window.onerror("bad xhr status: " + xhr.status + ' for ' + uriRealPart + '.js', '[system]'); } var script_code = document.createElement('script'); script_code.type = 'text/javascript'; script_code.text = responseText + '\n service.show_after_load();'; document.body.appendChild(script_code); }); } }); } }, init : function() { this.loadScript(''); js_loader.counter_loading_scripts = 2; js_loader.object_load_script('jQuery', ['/static/blue_design/js/vendor/jquery-1.11.1.min.js', 'http://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js', 'http://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.js']); js_loader.object_load_script('on_load_jquery', ['http://slideplayer.com/static/js/39db/total_blue.js', '/static/js/total_blue.js']); } }; js_loader.init(); </script> <script> var nextSlideUrl="\/slide\/8257749\/", nextSlidePrecacheUrls=[]; </script> <script> (function(){ if (typeof (nextSlideUrl) != 'undefined' && nextSlideUrl) { var bottomEvent, wasNotOnBottom = false, footer = document.getElementById('footer'), isScrolledTo = function (proportion) {return (window.innerHeight + window.pageYOffset ) >= (footer.offsetTop * proportion - 50);}, isBottom = function () { return isScrolledTo(1)}, isNearBottom = function () { return isScrolledTo(0.9)}, isHalfPage = function () {return isScrolledTo(0.2)}, preloaded = false, preloadUrl = function (url) { var res = document.createElement("link"); res.rel = "prefetch"; res.href = url; document.head.appendChild(res); }, progressbar = document.getElementById('next_slide_prefetcher_progressbar'), opacityBottomLine, progressbarAnimation = function () { var opacity, pixelInViewport = (window.innerHeight + window.pageYOffset) - progressbar.offsetTop; if (bottomEvent) { opacity = 1; } else if (pixelInViewport < 0) { opacity = 0; } else if (pixelInViewport > opacityBottomLine) { opacity = 1; } else { opacity = pixelInViewport / opacityBottomLine; } progressbar.style.opacity = opacity; }, prevWindowOnload = window.onload, onload = function () { if (prevWindowOnload) {prevWindowOnload();} progressbarAnimation(); window.onscroll = function () { progressbarAnimation(); if (!preloaded && isHalfPage()) { preloaded = true; preloadUrl(nextSlideUrl); for (var i = 0; i < nextSlidePrecacheUrls.length; i++) { preloadUrl(nextSlidePrecacheUrls[i]) } console.log('start preload next slides'); } if (!wasNotOnBottom && !isNearBottom()) { wasNotOnBottom = true; progressbar.style.display = 'block'; opacityBottomLine = progressbar.offsetHeight + 200; } if (wasNotOnBottom && !bottomEvent && isBottom()) { bottomEvent = window.setTimeout(function () { bottomEvent = null; if (isBottom()) { document.getElementById('next_slide_prefetcher_progressbar_done').style.display = 'block'; window.setTimeout(function () {document.location = nextSlideUrl;}, 200); } }, 500); } }; }; if (window.addEventListener) { window.addEventListener('load', onload); } } })(); </script> </body> </html>