Presentation is loading. Please wait.

Presentation is loading. Please wait.

Kartic Subr Cyril Soler Frédo Durand Edge-preserving Multiscale Image Decomposition based on Local Extrema INRIA, Grenoble Universities MIT CSAIL.

Similar presentations


Presentation on theme: "Kartic Subr Cyril Soler Frédo Durand Edge-preserving Multiscale Image Decomposition based on Local Extrema INRIA, Grenoble Universities MIT CSAIL."— Presentation transcript:

1 Kartic Subr Cyril Soler Frédo Durand Edge-preserving Multiscale Image Decomposition based on Local Extrema INRIA, Grenoble Universities MIT CSAIL

2 Multiscale image decomposition + + Medium Pixels Intensity Input Fine Coarse 1D

3 Motivation Detail enhancement Separating fine texture from coarse shading

4 What is detail?

5 Some examples

6 Related work Linear multiscale methods Edge-preserving approaches 1D Signal analysis

7 Related work : Linear multiscale methods Edge-preserving approaches 1D Signal analysis [Burt and Adelson 93] [Rahman and Woodell 97] [Pattanaik et al 98] [Lindeberg 94] Edges not preserved (Causes halos while editing)

8 Related work : Edge-preserving methods 1D Signal analysis [Farbman et al 08] [Fattal et al 07] [Bae et al 07] [Chen et al 07] Edge-aware Assume detail is low contrast

9 Related work: Empirical mode decomposition Linear multiscaleEdge-preserving approaches [Huang et al 98] Developed for 1D signals Detail depends on spatial scale Not edge-aware

10 Related work Edge-preserving approaches 1D Signal analysis Linear multiscale methods

11 Existing edge-preserving image decompositions Input Edge-preserving smoothing (e.g. bilateral filter) Base layer Detail layer (Input – Base) + Iteratively smooth input Recursively smooth base layer OR

12 Input Base layer Detail layer (Input – Base) + Edge-preserving smoothing (e.g. bilateral filter) Edge (preserved) Detail (smoothed) Existing edge-preserving image decompositions Assume detail is low-intensity variation

13 Challenge: Smoothing high-contrast detail Input

14 Challenge: Smoothing high-contrast detail Edge Low-contrast detail High-contrast detail

15 Conservative smoothing (bilateral filter with narrow range-Gaussian) Challenge: Smoothing high-contrast detail Edge preserved? Low-contrast detail smoothed? High-contrast detail smoothed?

16 Challenge: Smoothing high-contrast detail Edge preserved? Low-contrast detail smoothed? High-contrast detail smoothed? Aggressive smoothing (bilateral filter with wide range-Gaussian)

17 Example: Smoothing high-contrast detail Input[Farbman et al 2008] λ= 13, α = 0.2 [Farbman et al 2008] λ= 13, α = 1.2 Detail not smoothed Coarse features smoothed Edge smoothed

18 Our approach: Use local extrema Input Local maxima Local minima Detail = oscillations between local extrema

19 Our approach: Use local extrema Base = Local mean of neighboring extrema

20 Our approach: Use local extrema Local mean of neighboring extrema Edge preserved? Low-contrast detail smoothed? High-contrast detail smoothed?

21 Our detail extraction Input Base layer Detail layer + High-contrast detail smoothed Edges preserved

22 Algorithm Identify local extrema Estimate smoothed mean Detail at multiple scales Input: Image + number of layers

23 Algorithm: Illustrative example

24 Algorithm: Identifying local extrema Extrema detection kernel Local maxima Local minima

25 Algorithm: Estimating smoothed mean 1) Construct envelopes Minimal envelope Interpolation preserves edge [Levin et al 04] Maximal envelope

26 Algorithm: Estimating smoothed mean 2) Average envelopes Estimated mean

27 Algorithm: After one iteration + Input Base Detail

28 Algorithm: Mean at coarser scale Local maxima Local minima Widen extrema detection kernel

29 Algorithm: Mean at coarser scale Minimal envelope Maximal envelope

30 Algorithm: Mean at coarser scale Estimated mean

31 Recap: Detail extraction Identify local extrema Construct envelopes Average envelopes - Input Detail Smoothed mean (Base)

32 Identify local extrema Construct envelopes Average envelopes Recap: Detail extraction Smoothed mean Detail = Input - BaseBase Input

33 Base B 2 Base B 1 Input Detail D 2 Detail D 1 Recap: Multiscale decomposition Layer 1Layer 2Layer 3 Iteration 1 on input Iteration 2 on B 1 Recurse n-1 times for n-layers CoarseFine

34 Results

35 Results: Smoothing Input Smoothed

36 Results: Multiscale decomposition Medium Input Fine Coarse Low contrast edgeHigh contrast detailLow contrast edgeHigh contrast detail

37 Results: Multiscale decomposition Input

38 Results: Multiscale decomposition Fine Coarse

39 Results: Multiscale decomposition Input

40 Results: Multiscale decomposition After one iteration Base layerDetail layer

41 Results: Multiscale decomposition After two iterations Base layerDetail layer

42 Applications: Image equalization

43 Applications: Smoothing hatched images

44 Applications: Coarse illumination transfer

45

46

47 Applications: Tone-mapping HDR images

48 Comparison [Farbman et al 2008] Our Result

49 Our smoothing

50 Limitation Input Our Result

51 Conclusion Detail based on local extrema Smoothing high contrast detail Edge-preserving multiscale decomposition

52 Acknowledgements INRIA post-doctoral fellowship Equipe Associée with MIT ‘Flexible Rendering’ Adrien Bousseau & Alexandrina Orzan HFIBMR grant (ANR-07-BLAN-0331) Anonymous reviewers

53 C++ source: http://artis.imag.fr/~Kartic.Subr/research.html


Download ppt "Kartic Subr Cyril Soler Frédo Durand Edge-preserving Multiscale Image Decomposition based on Local Extrema INRIA, Grenoble Universities MIT CSAIL."

Similar presentations


Ads by Google