Presentation is loading. Please wait.

Presentation is loading. Please wait.

PLATO: Predictive Latency- Aware Total Ordering Mahesh Balakrishnan Ken Birman Amar Phanishayee.

Similar presentations

Presentation on theme: "PLATO: Predictive Latency- Aware Total Ordering Mahesh Balakrishnan Ken Birman Amar Phanishayee."— Presentation transcript:

1 PLATO: Predictive Latency- Aware Total Ordering Mahesh Balakrishnan Ken Birman Amar Phanishayee

2 Total Ordering a.k.a Atomic Broadcast delivering messages to a set of nodes in the same order messages arrive at nodes in different orders… nodes agree on a single delivery order messages are delivered at nodes in the agreed order

3 Modern Datacenters Applications E-tailers, Finance, Aerospace Service-Oriented Architectures, Publish- Subscribe, Distributed Objects, Event Notification… … Totally Ordered Multicast! Hardware Fast high-capacity networks Failure-prone commodity nodes

4 Total Ordering in a Datacenter Updates are Totally Ordered Replicated Service Totally Ordered Multicast is used to consistently update Replicated Services Latency of Multicast System Consistency Requirement: order multicasts consistently, rapidly, robustly

5 Multicast Wishlist Low Latency! High (stable) throughput Minimal, proactive overheads Leverage hardware properties HW Multicast/Broadcast is fast, unreliable Handle varying data rates Datacenter workloads have sharp spikes… and extended troughs!

6 State-of-the-Art Traditional Protocols Conservative Latency-Overhead tradeoff Example: Fixed Sequencer Simple, works well Optimistic Total Ordering: deliver optimistically, rollback if incorrect Why this works – No out-of-order arrival in LANs Optimistic total ordering for datacenters?

7 PLATO: Predictive Ordering In a datacenter, broadcast / multicast occurs almost instantaneously Most of the time, messages arrive in same order at all nodes. Some of the time, messages arrive in different orders at different nodes. Can we predict out-of-order arrival?

8 Reasons for Disorder: Swaps Out-of-order arrival can occur when the inter-send interval between two messages is smaller than the diameter of the network Typical Datacenter Diameter: microseconds

9 Reasons for Disorder: Loss Datacenter networks are over- provisioned Loss never occurs in the network Datacenter nodes are cheap Loss occurs due to end-host buffer overflows caused by CPU contention

10 Emulab Testbed (Utah)

11 Cornell Testbed

12 Disorder: Emulab3 At 2800 packets per sec, 2% of all packet pairs are swapped and 0.5% of packets are lost. Percentage of swaps and losses goes up with data rate

13 Disorder

14 Predicting Disorder Predictor: Inter-arrival time of consecutive packets into user-space Why? Swaps: simultaneous multicasts low inter-arrival time Loss: kernel buffer overflow sequence of low inter-arrival times

15 Predicting Disorder 95% of swaps and 14% of all pairs are within 128 µsecs Inter-arrival time of swaps Inter-arrival time of all pairs Cornell Datacenter, 400 multicasts/sec

16 Predicting Disorder

17 PLATO Design Heuristic: If two packets arrive within Δ µsecs, possibility of disorder PLATO Heuristic + Lazy Fixed Sequencer Heuristic works ~ zero (Δ) latency Heuristic fails fixed sequencer latency

18 PLATO Design API: optdeliver, confirm, revoke Ordering Layer: Pending Queue: Packets suspected to be out-of-order, or queued behind suspected packets Suspicious Queue: Packets optdelivered to the application, not yet confirmed

19 PLATO Design

20 Performance Fixed Sequencer PLATO At small values of Δ, very low latency of delivery but more rollbacks

21 Performance Latency of both Fixed- Sequencer and PLATO decreases as throughput increases

22 Performance Traffic Spike: PLATO is insensitive to data rate, while Fixed Sequencer depends on data rate

23 Performance Δ is varied adaptively in reaction to rollbacks Latency is as good as static Δ parameterization

24 Conclusion First optimistic total order protocol that predicts out-of-order delivery Slashes ordering latency in datacenter settings Stable at varying loads Ordering layer of a time-critical protocol stack for Datacenters

Download ppt "PLATO: Predictive Latency- Aware Total Ordering Mahesh Balakrishnan Ken Birman Amar Phanishayee."

Similar presentations

Ads by Google