Download presentation

Presentation is loading. Please wait.

Published byThomas Bradshaw Modified over 3 years ago

1
**Part B: Spatial Autocorrelation and regression modelling**

Chapter 5 Part B: Spatial Autocorrelation and regression modelling

2
**Autocorrelation Time series correlation model**

{xt,1} t=1,2,3…n‑1 and {xt,2} t=2,3,4…n 3rd edition

3
**Spatial Autocorrelation**

Correlation coefficient {xi} i=1,2,3…n, {yi} i=1,2,3…n Time series correlation model {xt,1} t=1,2,3…n‑1 and {xt,2} t=2,3,4…n Mean values: Lag 1 autocorrelation: large n 3rd edition

4
**Spatial Autocorrelation**

Classical statistical model assumptions Independence vs dependence in time and space Tobler’s first law: “All things are related, but nearby things are more related than distant things” Spatial dependence and autocorrelation Correlation and Correlograms 3rd edition

5
**Spatial Autocorrelation**

Covariance and autocovariance Lags – fixed or variable interval Correlograms and range Stationary and non-stationary patterns Outliers Extending concept to spatial domain Transects Neighbourhoods and distance-based models 3rd edition

6
**Spatial Autocorrelation**

Global spatial autocorrelation Dataset issues: regular grids; irregular lattice (zonal) datasets; point samples Simple binary coded regular grids – use of Joins counts Irregular grids and lattices – extension to x,y,z data representation Use of x,y,z model for point datasets Local spatial autocorrelation Disaggregating global models 3rd edition

7
**Spatial Autocorrelation**

Joins counts (50% 1’s) A. Completely separated pattern (+ve) B. Evenly spaced pattern (-ve) C. Random pattern 3rd edition

8
**Spatial Autocorrelation**

Joins count Binary coding Edge effects Double counting Free vs non-free sampling Expected values (free sampling) 1-1 = 15/60, 0-0 = 15/60, 0-1 or 1-0 = 30/60 3rd edition

9
**Spatial Autocorrelation**

Joins counts A. Completely separated (+ve) B. Evenly spaced (-ve) C. Random 3rd edition

10
**Spatial Autocorrelation**

Joins count – some issues Multiple z-scores Binary or k-class data Rook’s move vs other moves First order lag vs higher orders Equal vs unequal weights Regular grids vs other datasets Global vs local statistics Sensitivity to model components 3rd edition

11
**Spatial Autocorrelation**

Irregular lattice – (x,y,z) and adjacency tables Cell data Cell coordinates (row/col) x,y,z view +4.55 +5.54 +2.24 -5.15 +9.02 +3.10 -4.39 -2.09 +0.46 -3.06 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3 x y z 1 2 4.55 3 5.54 2.24 ‑5.15 9.02 3.1 ‑4.39 ‑2.09 4 0.46 ‑3.06 3 7 1 4 8 2 5 9 6 10 Cell numbering Adjacency matrix, total 1’s=26 3rd edition

12
**Spatial Autocorrelation**

“Spatial” (auto)correlation coefficient Coordinate (x,y,z) data representation for cells Spatial weights matrix (binary or other), W={wij} From last slide: Σ wij=26 Coefficient formulation – desirable properties Reflects co-variation patterns Reflects adjacency patterns via weights matrix Normalised for absolute cell values Normalised for data variation Adjusts for number of included cells in totals 3rd edition

13
**Spatial Autocorrelation**

Moran’s I TSA model 3rd edition

14
**Spatial Autocorrelation**

Moran I =10*16.19/(26*196.68)= 0 A. Computation of variance/covariance-like quantities, matrix C B. C*W: Adjustment by multiplication of the weighting matrix, W 3rd edition

15
**Spatial Autocorrelation**

Moran’s I Modification for point data Replace weights matrix with distance bands, width h Pre-normalise z values by subtracting means Count number of other points in each band, N(h) 3rd edition

16
**Spatial Autocorrelation**

Moran I Correlogram Source data points Lag distance bands, h Correlogram 3rd edition

17
**Spatial Autocorrelation**

Geary C Co-variation model uses squared differences rather than products Similar approach is used in geostatistics 3rd edition

18
**Spatial Autocorrelation**

Extending SA concepts Distance formula weights vs bands Lattice models with more complex neighbourhoods and lag models (see GeoDa) Disaggregation of SA index computations (row-wise) with/without row standardisation (LISA) Significance testing Normal model Randomisation models Bonferroni/other corrections 3rd edition

19
**Regression modelling Simple regression – a statistical perspective**

One (or more) dependent (response) variables One or more independent (predictor) variables Linear regression is linear in coefficients: Vector/matrix form often used Over-determined equations & least squares 3rd edition

20
**Regression modelling Ordinary Least Squares (OLS) model**

Minimise sum of squared errors (or residuals) Solved for coefficients by matrix expression: 3rd edition

21
**Regression modelling OLS – models and assumptions**

Model – simplicity and parsimony Model – over-determination, multi-collinearity and variance inflation Typical assumptions Data are independent random samples from an underlying population Model is valid and meaningful (in form and statistical) Errors are iid Independent; No heteroskedasticity; common distribution Errors are distributed N(0,2) 3rd edition

22
**Regression modelling Spatial modelling and OLS**

Positive spatial autocorrelation is the norm, hence dependence between samples exists Datasets often non-Normal >> transformations may be required (Log, Box-Cox, Logistic) Samples are often clustered >> spatial declustering may be required Heteroskedasticity is common Spatial coordinates (x,y) may form part of the modelling process 3rd edition

23
**Regression modelling OLS vs GLS OLS assumes no co-variation**

Solution: GLS models co-variation: y~ N(,C) where C is a positive definite covariance matrix y=X+u where u is a vector of random variables (errors) with mean 0 and variance-covariance matrix C 3rd edition

24
**Regression modelling GLS and spatial modelling Other models**

y~ N(,C) where C is a positive definite covariance matrix (C must be invertible) C may be modelled by inverse distance weighting, contiguity (zone) based weighting, explicit covariance modelling… Other models Binary data – Logistic models Count data – Poisson models 3rd edition

25
**Regression modelling Choosing between models**

Information content perspective and AIC where n is the sample size, k is the number of parameters used in the model, and L is the likelihood function 3rd edition

26
**Regression modelling Some ‘regression’ terminology Simple linear**

Multiple Multivariate SAR CAR Logistic Poisson Ecological Hedonic Analysis of variance Analysis of covariance 3rd edition

27
Regression modelling Spatial regression – trend surfaces and residuals (a form of ESDA) General model: y - observations, f( , , ) - some function, (x1,x2) - plane coordinates, w - attribute vector Linear trend surface plot Residuals plot 2nd and 3rd order polynomial regression Goodness of fit measures – coefficient of determination 3rd edition

28
**Regression modelling Regression & spatial autocorrelation (SA)**

Analyse the data for SA If SA ‘significant’ then Proceed and ignore SA, or Permit the coefficient, , to vary spatially (GWR), or Modify the regression model to incorporate the SA 3rd edition

29
**Regression modelling Regression & spatial autocorrelation (SA)**

Analyse the data for SA If SA ‘significant’ then Proceed and ignore SA, or Permit the coefficient, , to vary spatially (GWR) or Modify the regression model to incorporate the SA 3rd edition

30
**Regression modelling Geographically Weighted Regression (GWR)**

Coefficients, , allowed to vary spatially, (t) Model: Coefficients determined by examining neighbourhoods of points, t, using distance decay functions (fixed or adaptive bandwidths) Weighting matrix, W(t), defined for each point Solution: GLS: 3rd edition

31
**Regression modelling Geographically Weighted Regression**

Sensitivity – model, decay function, bandwidth, point/centroid selection ESDA – mapping of surface, residuals, parameters and SEs Significance testing Increased apparent explanation of variance Effective number of parameters AICc computations 3rd edition

32
**Regression modelling Geographically Weighted Regression**

Count data – GWPR use of offsets Fitting by ILSR methods Presence/Absence data – GWLR True binary data Computed binary data - use of re-coding, e.g. thresholding 3rd edition

33
**Regression modelling Regression & spatial autocorrelation (SA)**

Analyse the data for SA If SA ‘significant’ then Proceed and ignore SA, or Permit the coefficient, , to vary spatially (GWR) or Modify the regression model to incorporate the SA 3rd edition

34
**Regression modelling Regression & spatial autocorrelation (SA)**

Modify the regression model to incorporate the SA, i.e. produce a Spatial Autoregressive model (SAR) Many approaches – including: SAR – e.g. pure spatial lag model, mixed model, spatial error model etc. CAR – a range of models that assume the expected value of the dependent variable is conditional on the (distance weighted) values of neighbouring points Spatial filtering – e.g. OLS on spatially filtered data 3rd edition

35
**Regression modelling SAR models Pure spatial lag: Re-arranging:**

MRSA model: Spatial weights matrix Autoregression parameter Linear regression added 3rd edition

36
**Regression modelling SAR models Spatial error model:**

Substituting and re-arranging: Linear regression + spatial error iid error vector Spatial weighted error vector Linear regression (global) iid error vector SAR lag Local trend 3rd edition

37
**Regression modelling CAR models Standard CAR model:**

Local weights matrix – distance or contiguity Variance : Different models for W and M provide a range of CAR models Autoregression parameter Expected value at i weighted mean for neighbourhood of i 3rd edition

38
**Regression modelling Spatial filtering**

Apply a spatial filter to the data to remove SA effects Model the filtered data Example: Spatial filter 3rd edition

Similar presentations

OK

Www.spatialanalysisonline.com Chapter 5 Part A: Spatial data exploration.

Www.spatialanalysisonline.com Chapter 5 Part A: Spatial data exploration.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on fire extinguisher types colors Ppt on earth hour 2016 Ppt on area and perimeter of quadrilaterals Sayings we share ppt online Ppt on mission to mars Ppt on project life cycle phases Ppt on non biodegradable waste example Ppt on disk formatting tools View my ppt online ticket Ppt on school management system project