Download presentation

Presentation is loading. Please wait.

Published byJoseph Russo Modified over 4 years ago

1
www.spatialanalysisonline.com Chapter 7 Part B: Locational analysis

2
3 rd editionwww.spatialanalysisonline.com2 Locational analysis Types of problem: Planar – demand and facilities can be located anywhere in the plane Discrete – nodes are fixed, so a discrete set of locations for demand and possibly facilities, but no network defined Network – demand and facilities assumed to occur at network nodes (vertices); travel restricted to network – more common now

3
3 rd editionwww.spatialanalysisonline.com3 Locational analysis Location problems – key issues: How many facilities required? What size/type of facilities? What objectives? e.g. cost minimisation (as in distribution from warehouses to stores) or service maximisation (ensuring every potential customer can be served within a given time/distance) Do capacity constraints apply? – facilities, networks, delivery/collection vehicles etc

4
3 rd editionwww.spatialanalysisonline.com4 Locational analysis Location problems – further key issues: Distance metric Static/dynamic Private/public Single/multi-objective Unique/diverse service Elastic/inelastic demand Deterministic/adaptive/stochastic Hierarchical/single level Desirable/undesirable facilities

5
3 rd editionwww.spatialanalysisonline.com5 Locational analysis P-median Broadly, locate p facilities to service demand at n>p locations, at minimal cost If p=1, demand locations are fixed, and the facility can be located anywhere in the plane, the solution is the MAT point, sometimes referred to as the spatial median. Find exactly by iterative algorithm If p>1 requires more specialised methods – can be solved exactly by branch and bound methods, but simple heuristics may be better If demand is defined to lie at the vertices of a network, and travel must be via the network, facilities will be located at network nodes

6
3 rd editionwww.spatialanalysisonline.com6 Locational analysis P-median – Coopers heuristic (Planar problem) Randomly select p points in the MBR or the convex hull of the customer point set, V, as the initial locations for the median points Allocate every point in V to its (Euclidean) closest median point. This partitions V into p subsets, V p For each of the p subsets of V, compute the MAT point using standard iterative equation Iterate steps 2 and 3 until the change in the objective function falls below a preset tolerance level Optionally repeat process from step 1

7
3 rd editionwww.spatialanalysisonline.com7 Locational analysis P-median – 1 and 2 facility planar solutions

8
3 rd editionwww.spatialanalysisonline.com8 Locational analysis P-median – 1 facility planar solution, weighted demand

9
3 rd editionwww.spatialanalysisonline.com9 Locational analysis P-median – T&B heuristic (Network problems) Let V be the set of m candidate vertices, then: Randomly select p vertices from V and call this set Q For each vertex i in Q and each j not in Q (i.e. in the set V but not in Q) swap i and j and see if the value of the objective function is improved; if so keep this new solution as the new set Q Iterate step 2 until no further improvements are found Optionally repeat from step 1

10
3 rd editionwww.spatialanalysisonline.com10 Locational analysis P-median – Other heuristics (Network problems) May commence with T&B or greedy algorithm as a starting solution, then apply improved procedure Greedy add – very fast Candidate list search (CLS) – very fast Variable neighbourhood search (VNS) - fast Lagrangian relaxation – slow, but provides upper and lower bounds on optimality

11
3 rd editionwww.spatialanalysisonline.com11 Locational analysis P-median: p=5, network problem, CLS solution Tripolis, Greece: 1358 vertices (variable demand per vertex; 2256 edges. 5 facility p-median solution. Colours show demand allocations (serviced vertices). Darker lines show network routes employed. Note – all facilities located fairly centrally

12
3 rd editionwww.spatialanalysisonline.com12 Locational analysis P-centre Broadly, locate p facilities to service demand at n>p locations, such that the maximum distance travelled by customers is minimised This is a form of coverage problem – attempting to provide facilities for all customers in a manner which ensures that (i) every customer can been serviced and (ii) travel distances/times/costs are not excessive Max travel time is often computed from (network) distance. If a maximum acceptable value is specified then may require a lot of facilities (i.e. p becomes a variable)

13
3 rd editionwww.spatialanalysisonline.com13 Locational analysis P-centre – 1 and 2 facility planar solutions

14
3 rd editionwww.spatialanalysisonline.com14 Locational analysis P-centre – 1 facility planar solution, weighted demand

15
3 rd editionwww.spatialanalysisonline.com15 Locational analysis P-centre: p=5, network problem, CLS solution Tripolis, Greece: 1358 vertices (variable demand per vertex; 2256 edges. 5 facility p-centre solution. Colours show demand allocations (serviced vertices). Darker lines show network routes employed. Note - much wider spread of facilities vs the p-median solution

16
3 rd editionwww.spatialanalysisonline.com16 Locational analysis Arc Routing Visit all links in a network (exactly once if possible) Applications: rubbish collection; snow clearance; door-to-door deliveries/meter reading Variants: subset of links to be covered; variable link costs/directional constraints; capacity constraints on vehicles; preferential links

17
3 rd editionwww.spatialanalysisonline.com17 Locational analysis Arc routing Check network for Eulerian circuit condition (degree=even if undirected) – repair where necessary Solve the ECP – e.g. using Fleurys algorithm Example: solution (as map) for snow clearance (TransCAD demo dataset)

Similar presentations

OK

Discrete Optimization MA2827 Fondements de l’optimisation discrète https://project.inria.fr/2015ma2827/ Material from P. Van Hentenryck’s course.

Discrete Optimization MA2827 Fondements de l’optimisation discrète https://project.inria.fr/2015ma2827/ Material from P. Van Hentenryck’s course.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on save water save earth Ppt on sports day ideas Ppt on latest bluetooth technology Ppt on ms word window with label Ppt on programmable logic device Performance linkedin pay ppt online Ppt on personality development for college students Convert pdf ppt to ppt online maker Ppt on power diode ppt Ppt on social contract theory and criminal justice