Download presentation

Presentation is loading. Please wait.

Published byChristopher Quinlan Modified over 4 years ago

2
Peter Richter - Institut für Theoretische Physik The Golden Section in Nature 2007 3 14

3
Peter Richter - Institut für Theoretische Physik Ratios of numbers: a mathematical construct and a vote 1:11:1.414…1:1.618…1:2

4
Peter Richter - Institut für Theoretische Physik Some people claim that Nautilus embodies the golden section – does it?

5
Peter Richter - Institut für Theoretische Physik Does Apollo?

6
Peter Richter - Institut für Theoretische Physik May be the Parthenon und Walhalla?

7
Peter Richter - Institut für Theoretische Physik 0 g 1 g 1 1- g g = g 2 = 1- g g (1+ g) = 1 g = 1 1+ g = 1 1 + 1 1+ g = 1 1 + 1 1 1+ g = … Calculating the golden number

8
Peter Richter - Institut für Theoretische Physik Harmonic approximations: Fibonacci numbers c 1:1 c'c' 1:2 g 2:3 a 3:5 g#g# 5:8 ? 8:13 G=1/g 1:1,618 … Tonica Octave sm 3rd lg 6th Quart Quint lg 3rd sm 6th

9
Peter Richter - Institut für Theoretische Physik The golden number g is the most irrational of all numbers: even though its continued fraction approximation p n /q n converges quadratically fast with the denominator q n, this convergence is slower than for any other irrational number! Therefore, g embodies the principle of irrationality, it is as far as can be from any resonances like 1:1, 1:2, 2:3, … g may not only be considered on a line but also on a circle

10
Peter Richter - Institut für Theoretische Physik The golden section on disk or cylinder

11
Peter Richter - Institut für Theoretische Physik Sunflowers, daisies, thistles, … 138.0 o 137.5 o 136.5 o 34:55

12
Peter Richter - Institut für Theoretische Physik Real or fake?

13
Peter Richter - Institut für Theoretische Physik

15
Double pendulum and roses …

16
Peter Richter - Institut für Theoretische Physik Do we understand? Double pendulum: yes, from –Poincaré ~1890 –Kolmogorov, Arnold, Moser 1963 –numerical work in the 1980s Sunflowers, pine cones, and roses? partly, from –Leonardo da Vinci ~1510 –Kepler ~1610 –mathematical modelling of morphogenesis … but not really: closer analysis of the principles of regulation is needed, starting from a molecular level, identifying the important agents, finding appropriate equations and investigating their dynamics. The challenge: explain the universality of g!

17
Peter Richter - Institut für Theoretische Physik

Similar presentations

OK

Section 9.1 Finding Roots. OBJECTIVES Find the square root of a number. A Square a radical expression. B.

Section 9.1 Finding Roots. OBJECTIVES Find the square root of a number. A Square a radical expression. B.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google