Download presentation
Presentation is loading. Please wait.
Published byAmber Curran Modified over 4 years ago
1
X. Higgs Bosonen in Supersymmetrie Standard Modell: 1 komplexes Higgs Duplett (4 Komponenten) 1 Vakuumerwartungswert 174 GeV 3 massive Eichbosonen (W +, W -, Z 0 ) Eine mögliche Anregung übrig: 1 neutrales Higgs Boson h Supersymmetrie 2 komplexe Higgs Dupletts (8 Komponenten) 3 massive Eichbosonen (W +, W -, Z 0 ) 5 mögliche Anregungen übrig: 3 neutrale Higgs Bosonen: h, H, A 2 geladene Higgs Bosonen: H +, H - In niedr. Ordnung 2 Parameter : tan = und m A
2
In mehr Detail (Martin, 7.1.) 2 komplexe Isospindupletts 8 reelle skalare Felder 3 Goldstone Felder (G +, G 0, G - ) verschwinden in massiven W +, Z 0, W - Verbleiben 3 neutrale (h 0, H 0, A 0 ) und 2 geladene (H +, H - ) Higgs Bosonen X.1. Higgs Phänomenologie in Supersymmetrie
3
Minimal Supersymmetry: 3 neutral Higgs Bosons: h, H, A 2 charged Higgs Bosons: H +, H - at tree level, 2 parameters : tan = v 2 /v 1 and m A Stephen Martin, hep-ph/97-09356 g MSSM = g SM MSSM on tree level t b/ W/Z h cos/sin-sin/cossin() H sin/sincos/coscos() A cottan -----
4
MSSM at 2-loop level Loop level (constrained MSSM): SUSY breaking parameters, assumed to be unified at some scale : gluino mass and Higgs mass parameter M ğ and SU(2) gaugino mass term unified at M GUT M 2 at M EW sfermion mass terms : common at M EW M susy at M EW sfermion trilinear couplings : common at M EW A at M EW mixing parameter in the stop sector : X t = A t - cot Total: 8 parameters m t =171.4 GeV measured M 2, M susy, M ğ, and X t chosen to define a benchmark scenario tan and m A free to vary (tan[1, 50] and m A[50, 1000]GeV) Higgs Masses A ~ degenerate in mass with h at low masses H and H ± high masses h mass < 130 GeV (all scenarios) S.Heinemeyer in J.Ellis et al CERN-PH-TH/2007-012
5
Benchmark scenarios Examples: Description: http://arxiv.org/abs/hep-ph/0202167 M. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weigleinhttp://arxiv.org/abs/hep-ph/0202167
6
Features of Large m A and m H : h is SM-like w/ maximal mass g MSSM = g SM H/A/H ± produced via Fermion-couplings! Large enhancement of SUSY-Higgs ~(tan) 2 possible Large tan: b- associated production Small tan: t- associated production Easy pattern for large m A t b/ W/Z h 11 H -cottan 0 A cottan 0
7
Example: Widths and Branching Ratios to From Ph.D. thesis, Jana Schaarschmidt, TU Dresden, 2010 Widths H,A: enhanced by tan h: above m ~ 200 GeV SM-like (narrow) Branching ratios SM: negligible above 160 GeV SUSY: always sizable increasing w/ tan A and H
8
Cross Sections
9
Can we see the additional Higgses? good news: at least one Higgs boson observable for all parameters in all four MSSM benchmark scenarios bad news: significant area where only lightest Higgs boson h is observable e.g. Higgs discovery, ATLAS prel., 300 fb -1 (M. Schumacher, hep-ph/0410112, ATL-com-phys-2004-070)
10
X. 2. Search for Neutral Higgs Bosons How to discover?
11
Basic 2 2 diagram Corresponding to b-pdf in Proton Details much more complex Add 2 3, 2 2, and 2 1 w/o double counting Solution: SHERPA MC generator w/ CKKW matching between Matrix Element and Parton Shower contributions Jet fractions agree with analytic calculation (Harlander+Kilgore) Example: full (down-type) leptonic modes b h/H/A b µ + µ - b h/H/A b b + νν - νν Main backgrounds (several 100 pb) tt (b)b µ + ν µ - ν tt (b)b + ν - ν qZ bµ + µ - qZ b Associate A/H production with b-quarks
12
Mass Resolutions µ + µ - : exzellente Massenauflösung ~ 3 GeV h/A/H trotzdem nicht getrennt, aber Breite messbar gröbere Massenauflösung 30 - 40 GeV benutzt kolineare Näherung des Tau Zerfalls tanm A =132 GeV tanm A =150 GeV M.Warsinsky, Doktorarbeit Dresden, 2008 14 TeV, 30 fb -1 ~ 2014 / 2015 J.Schaarschmidt, Diplomarbeit Dresden, 2007 14 TeV, 30 fb -1 ~ 2014 / 2015
13
Collinear Approximation
14
Performance (Ph.D. Thesis, Jana Schaarschmidt, 2010)
15
Lepton + Hadrons (ATLAS) Typical signal and background distributions at 14 TeV without b-Jetwith b-Jet
16
Extraction of Z background m shape from data Use Z and Z ee and reweight the lepton signals Just needs reweighting of track momenta e eNeeds also reweighting of *longitudinal* shower shape Very successful results (Jana Schaarschmidt, 2007) Z ee (Kathrin Leonhardt, 2008, Patrick Czodrowski, 2009)
17
Expected sensitivities Estimated reach after 1 fb -1 at 7 TeV (maybe end of 2011?) Discovery reach after 30 fb -1 at 14 TeV (2014/2015?)
18
X.3. Charged H ± Mass and Couplings: m H ± 2 = m A 2 + m W 2 in MSSM w/ negligible radiative corrections No coupling to W, Z Two fermionic couplings dominant: Minimum tb coupling at tan (m t / m b ) 7
19
LEP Limits Direct LEP limits for e + e - H + H - stop at ~m W due to W + W - backgr. MSSM: BR(H ±) dominant for m H ± ~ 85 – 89 GeV LEP direct H ± limits: Relevant in non-SUSY 2-Higgs Doublet Models (2HDM) Marginal in MSSM, since m H ± 2 = m A 2 + m W 2 anyway
20
Search for Charged Higgs Bosons New input from b-physics!
21
Newly developping constraints from b-decays Gino Isidori, 3 rd Workshop: Flavour in the Era of the LHC, 2006 Well defined pattern for exp. observables Starting to give useful constraints Most limits in literature for 2HDM ! No systematic studies for MSSM yet (too many param.!)
22
Leading-order H ± contribution! 2HDM (W.S.Hou, PRD 48 (1993) 2342) r BBR(2HDM)/BR(SM) = MSSM (G.Isidori, P.Paradisi, hep-ph/0605012) Gluino-induced corrections ( (m g,m q ) to down-type Yukawa couplings considerable for large tan r BBR(MSSM)/BR(SM) = B New Physics Amplitude M (H ± ) has opposite sign! suppression | M (H ± )| < | M (W ± )| (near-)cancellation | M (H ± )| ~ | M (W ± )| (near-)compensation | M (H ± )| ~ 2| M (W ± )| enhancement | M (H ± )| > 2| M (W ± )| r B tan ± ± ~~
23
B Experimental Signature
24
B First Observations 2.6 C.Bozzi, HCP2007
25
MSSM interpretation of B- and other constraints G. Isidori, F. Mescia, P. Paradisi, D. Temes: hep-ph/0703035 1.01 < R b s < 1.24 (1 sigma): blue lines 0.8 < R B < 0.9 (future guess!): black lines current 1-sigma would be 0.7 < R B < 1.3 NB: 2nd solution for m H < 200GeV not shown! B μ + μ < 8.0 × 10 8 : allowed below green line m B s = 17.35 ± 0.25 ps 1 : allowed below gray line (g-2) μ : 2 < a μ (exp SM)/10 9 < 4 : purple lines Dark Matter (~Bino) density: light blue forbidden M ˜q = 1.5 TeV A U = 1 TeV μ = 1.0 TeV M ˜ = 0.4 TeV M ˜q = 1.5 TeV A U = 1 TeV μ = 0.5 TeV M ˜ = 0.3 TeV
26
Two main production processes for m H ± < m t gg t t bW bH ± for m H ± > m t bg tH ± bW H ± Two main decay modes H ± dominant for small m H ± below 200 GeV (large tan 10) below 150 GeV (small tan ) H ± tb, approaches for large tan BR(tb)/BR() = (m b /m ) 2 ~ 6 H ± at LHC H±H± ± 95 130 170 215 310 m H ±(GeV) H ± (fb) M. Schumacher, ATL-com-phys-2004-070 H±H± t
27
z.B. für m H ± > m t : tH ± bW Transversale Massenverteilung nach 30 fb -1 Entdeckungs und Ausschlusspotenzial (Alle Kanäle kombiniert) H ± Discovery reach (ATLAS, TDR 2008) ~
Similar presentations
© 2018 SlidePlayer.com Inc.
All rights reserved.
Ppt on flux cored arc welding Ppt on fire extinguisher training Ieee papers ppt on sustainable buildings Ppt on power line communication journal Ppt on atrial septal defect treatment Ppt on 2 stroke ic engine efficiency Ppt on power system stability using facts devices Ppt on cross-sectional study in epidemiology Ppt on power grid failure east Ppt on access modifiers in java