Presentation is loading. Please wait.

Presentation is loading. Please wait.

ENVIRONMENTAL SCIENCE 13e CHAPTER 4: Biodiversity and Evolution.

Similar presentations


Presentation on theme: "ENVIRONMENTAL SCIENCE 13e CHAPTER 4: Biodiversity and Evolution."— Presentation transcript:

1 ENVIRONMENTAL SCIENCE 13e CHAPTER 4: Biodiversity and Evolution

2 Core Case Study p. 59 What is the problem with amphibians since 1980? ____ % of all known amphibian species are threatened with extinction More than ____ % in the Caribbean Populations of another ____ % are declining

3 Core Case Study: Why Are Amphibians Vanishing? (1) Habitat loss and fragmentation Prolonged drought Increased ultraviolet radiation Parasites Viral and fungal diseases

4 Core Case Study: Why Are Amphibians Vanishing? (2) Pollution Climate change Overhunting Nonnative predators and competitors 33% of all amphibian species face extinction

5 Fig. 4-1, p. 61

6 4-1 What Is Biodiversity and Why Is It Important? Concept 4-1 The biodiversity found in genes, species, ecosystems, and ecosystem processes is vital to sustaining life on earth.

7 Biodiversity (1) Species diversity Species=a set of individuals that can mate and produce fertile offspring 8-100 million species total; likely 10- 14 million 2 million species identified ~50% in endangered tropical rainforests

8 Biodiversity (2) Genetic diversity- the variety of genetic material within a species or a population Ecosystem diversity- the variety of terrestrial aquatic ecosystems found in an area or on the earth –Biomes: Large regions with distinct climate and certain species especially vegetation Functional diversity- the biological and chemical processes such as energy flow and matter recycling needed for the survival of species, communities, and ecosystems

9 Functional Diversity The biological and chemical processes such as energy flow and matter recycling needed for the survival of species, communities, and ecosystems. Genetic Diversity The variety of genetic material within a species or a population. Species Diversity The number and abundance of species present in different communities Ecological Diversity The variety of terrestrial and aquatic ecosystems found in an area or on the earth. Fig. 4-2, p. 61

10 Coastal mountain ranges Deciduous forest Prairie grassland Coniferous forest Desert Coniferous forest Coastal chaparral and scrub Appalachian Mountains Mississippi River Valley Great Plains Rocky Mountains Great American Desert Sierra Nevada Fig. 4-4, p. 63 San Francisco Las Vegas Denver St. Louis Baltimore Average annual precipitation 100-125 cm (40-50 in.) 75-100 cm (30-40 in.) 50-75 cm (20-30 in.) 25-50 cm (10-20 in.) below-25 cm (0-10 in.) Major biomes found in 39 th parallel across the US Differences reflect changes in climate, Mainly average precipitation and temp

11 Science Focus: Insects Around for ~400 million years Bad reputation Useful to humans and ecosystems Vital roles in sustaining life –Pollinators –Natural pest control –Renewing soils

12 Fig. 4-A, p. 62

13

14 4-2 How Does the Earth’s Life Change over Time? Concept 4-2A The scientific theory of evolution explains how life on earth changes over time through changes in the genes of populations. Concept 4-2B Populations evolve when genes mutate and give some individuals genetic traits that enhance their abilities to survive and to produce offspring with these traits (natural selection).

15 Theory of Evolution Most of what we know of the history of life on earth comes from fossils Fossils –Mineralized and petrified remains –Skeletons, bones, and shells –Leaves and seeds –Impressions in rocks –Fossil record incomplete: ~1% of all species P. 64 Charles Darwin, On the Origin of Species, 1859

16 Population Changes over Time Populations (not individuals) evolve by becoming genetically different over time Genetic variability – mutations –Random changes in DNA molecules in genes –Can occur spontaneously –External agents: radiation –Can create a heritable trait

17 Natural Selection Adaptive traits - genetically favorable traits that increase the probability to survive and reproduce Trait – heritable and lead to differential reproduction Faced with environmental change –Adapt through evolution –Migrate –Become extinct

18 Evolution through Natural Selection Summarized Genes mutate, individuals are selected, and populations evolve such that they are better adapted to survive and reproduce under existing environmental conditions.

19 Natural Selection An example In face of snow and cold a few gray wolves in a population that have thicker fur might live longer and produce more offspring. Genes for thicker fur spread throughout the population and individuals with those genes increase in number and pass this helpful trait on to more offspring.

20 Fig. 4-5, p. 83 Most of the normal bacteria die The genetically resistant bacteria start multiplying Eventually the resistant strain replaces the strain affected by the antibiotic A group of bacteria, including genetically resistant ones, are exposed to an antibiotic Normal bacterium Resistant bacterium Stepped Art Evolution by natural selection

21 Adaptation through Natural Selection Has Limits Humans unlikely to evolve and have skin that’s not harmed by UV radiation 1.Desired trait must already be in the gene pool. 2.Must have high reproductive capacity so adaptive traits can be spread rapidly

22 Three Myths about Evolution through Natural Selection Refuted 1.“Survival of the fittest” does not mean “survival of the strongest” 2.Organisms don’t develop traits just because they would be useful: giraffes and long necks 3.There is no grand plan of nature to create more perfectly adapted species – no trend toward genetic perfection

23 Science Focus: How Did We Become Such a Powerful Species? Key adaptations – also enabled us to modify environment –Opposable thumbs allow us to grip and use tools –Walk upright which freed out hands for many uses –Complex brains Transmit ideas to others Develop technologies to alter environment We have developed powerful technology and taken over much of the earth’s net primary productivity for our own use

24 4-3 How Do Geological Processes and Climate Changes Affect Evolution? Concept 4-3 Tectonic plate movements, volcanic eruptions, earthquakes, and climate change have shifted wildlife habitats, wiped out large numbers of species, and created opportunities for the evolution of new species.

25 Plate Tectonics Locations of continents and oceans determine earth’s climate Movement of continents allow species to move and adapt Earthquakes and volcanoes affect biological evolution by separating populations of a species and allowing new species to develop

26 Present65 million years ago 135 million years ago225 million years ago Fig. 4-6, p. 66

27 Earth’s Long-Term Climate Changes Cooling and warming periods – affect evolution and extinction of species –Change ocean levels and area –Glaciers expanding and contracting –Climate changes Opportunities for the evolution of new species Many species go extinct

28 18,000 years before present Modern day (August) Northern Hemisphere Ice coverage Fig. 4-7, p. 67 Legend Continental ice Sea ice Land above sea level

29 Science Focus: Earth is Just Right for Life to Thrive Life needs a temperature range that results in liquid water Earth’s orbit: right distance from sun Earth’s optimal gravity: keeps atmosphere Favorable temperature range over earth history has promoted evolution and biodiversity Favorable oxygen level in atmosphere

30 4-4 How Do Speciation, Extinction, and Human Activities Affect Biodiversity? Concept 4-4 Human activities decrease the earth’s biodiversity by causing the premature extinction of species and by destroying or degrading habitats needed for the development of new species.

31 Speciation –One species splits into two or more species that can no longer breed and produce fertile offspring Geographic isolation Reproductive isolation

32 Geographic isolation-occurs when different groups of the same population of a species become physically isolated from one another for a long period of time Reproductive isolation- the inability of a species to breed successfully due to geographical, behavioral, physiological, or genetic barriers or differences

33 Spreads northward and southward and separates Arctic Fox Gray Fox Different environmental conditions lead to different selective pressures and evolution into two different species. Adapted to cold through heavier fur, short ears, short legs, and short nose. White fur matches snow for camouflage. Adapted to heat through lightweight fur and long ears, legs, and nose, which give off more heat. Northern population Southern population Early fox population Fig. 4-8, p. 68

34 Extinction (1) Biological extinction: entire species gone Local extinction: All members of a species in a specific area gone Endemic species (species found only in one area) vulnerable to extinction Background extinction- normal low rate of species disappearance Speciation generally more rapid than extinction Extinction is normal process but humans have become major source of premature extinction of growing number of species (Ch 8)

35 Extinction (2) Mass extinction –Earth took millions of years to recover from previous mass extinctions Balance between speciation and extinction determines biodiversity of earth Humans cause premature extinction of species

36 4-5 What Is Species Diversity and Why Is It Important? Concept 4-5 Species diversity is a major component of biodiversity and tends to increase the sustainability of some ecosystems.

37 Species Diversity: number of different species combined with the relative abundance of individuals within each of those species Species richness-the number of different species contained in a community Species evenness-relative abundance of individuals within each of the species in a community Fig 4-9 Coral Reef: high species richness, low evenness. Grove of Aspen trees low richness, high evenness. Varies with geographic location Species richness highest in the tropics, declines towards poles

38 Richness and Sustainability Hypothesis –Does a community with high species richness have greater sustainability and productivity? Research suggests “yes”

39 4-6 What Roles Do Species Play in an Ecosystem? Concept 4-6 Each species plays a specific ecological role called its niche.

40 Ecological Niche (1) Species occupy unique niches and play specific roles in an ecosystem Includes everything required for survival and reproduction –Water –Sunlight –Space –Temperatures –Food requirements

41 Ecological Niche (2) Generalist species- broad niches, can live in many different places, eat a variety of different foods, can tolerate a wide variety of different environmental conditions Specialist species- narrow niches, may be able to live only in one type of habitat, use one or a few types of food, or tolerate a narrow range of climatic or environmental conditions Native species Nonnative species –Spread in new, suitable niches

42 Fig. 4-10, p. 72 Specialized feeding niches of various bird species in a coastal wetland. What benefit does specialization provide?

43 Case Study: Cockroaches Generalists or Specialists? Existed for 350 million years – 3,500 known species Highly adapted, rapidly producing –Consume almost anything –Endure food shortage –Survive everywhere except polar regions –Avoid predation Carry human diseases

44 Fig. 4-11, p. 72

45 Niches Niches can be occupied by native and nonnative species –Native species: those species that normally thrive in a particular ecosystem –Nonnative species: invasive, alien, exotic Migrate into or are deliberately or accidently introduced into an ecosystem

46 Indicator Species Species that provide early warning of damage to a community or ecosystem Ex. presence or absence of trout species is indicator of water quality because trout need clean water with high levels of dissolved oxygen Birds Butterflies Amphibians

47 Fig. 4-12, p. 74

48 Keystone Keystone is a wedge shaped stone placed at the top of a stone archway. Remove this stone and the arch collapses. In some communities and ecosystems, ecologists hypothesize that certain species play a similar role

49 Keystone Species Significant role in their food web: large affect on types and abundances of other species in an ecosystem Elimination may alter structure and/or function of ecosystem ex. American alligator Pollinators ex. Bees, butterflies, hummingbirds, bats Top predators ex. Alligator, wolf, leopard, lion, shark

50 Foundation Species Create habitats and ecosystems Beavers Elephants Seed dispersers

51 Science Focus: American Alligator Highly adaptable Only natural predator is humans 1967 – endangered species list Successful environmental comeback Keystone species

52 Case Study: Why Should We Protect Sharks? Remove injured, sick animals Many are gentle giants Provide potential insight into cures for human diseases such as cancer Keystone species Hunted and killed by humans

53 Three Big Ideas from This Chapter - #1 Populations evolve when genes mutate and give some individuals genetic traits that enhance their abilities to survive and to produce offspring with these traits (natural selection).

54 Three Big Ideas from This Chapter - #2 Human activities are decreasing the earth’s vital biodiversity by causing the premature extinction of species and by disrupting habitats needed for the development of new species.

55 Three Big Ideas from This Chapter - #3 Each species plays a specific ecological role in the ecosystem where it is found (ecological niche).

56 Core Case Study p. 59 What is the problem with amphibians since 1980? Hundreds of species vanishing __33__ % of all known amphibian species are threatened with extinction More than __80__ % in the Caribbean Populations of another _43___ % are declining


Download ppt "ENVIRONMENTAL SCIENCE 13e CHAPTER 4: Biodiversity and Evolution."

Similar presentations


Ads by Google