Presentation is loading. Please wait.

Presentation is loading. Please wait.

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen.

Similar presentations


Presentation on theme: "Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen."— Presentation transcript:

1 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Geheimnis der dunklen Materie Georg Raffelt, Max-Planck-Institut für Physik, München Topical Seminar Neutrino Physics & Astrophysics Sept 2008, Beijing, China Topical Seminar Neutrino Physics & Astrophysics Sept 2008, Beijing, China The Dark Universe, Neutrinos, and Cosmological Mass Bounds

2 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Thomas Wright (1750), An Original Theory of the Universe

3 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, ChinaTitle Dark Energy 73% (Cosmological Constant) Neutrinos Neutrinos 0.1 2% 0.1 2% Dark Matter 23% Ordinary Matter 4% (of this only about 10% luminous) 10% luminous)

4 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Coma Cluster Dark Matter in Galaxy Clusters A gravitationally bound system of many particles obeys the virial theorem Velocity dispersion from Doppler shifts and geometric size Total Mass

5 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Dark Matter in Galaxy Clusters Fritz Zwicky: Die Rotverschiebung von Extragalaktischen Nebeln (The redshift of extragalactic nebulae) nebulae) Helv. Phys. Acta 6 (1933) 110 In order to obtain the observed average Doppler effect of 1000 km/s or more, the average density of the Coma cluster would have to be at least 400 times larger than what is found from observations of the luminous matter. Should this be confirmed one would find the surprising result that dark matter is far more abundant than luminous matter.

6 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Structure of Spiral Galaxies Spiral Galaxy NGC Spiral Galaxy NGC 891

7 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Rotation curve of the galaxy NGC 6503 from radio observations of hydrogen motion [MNRAS 249 (1991) 523] Galactic Rotation Curve from Radio Observations Expected from luminous matter in the disk Observed flat rotation curve Spiral galaxy NGC 3198 overlaid with hydrogen column density [ApJ 295 (1985) 305]

8 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Structure of a Spiral Galaxy Dark Halo

9 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Expanding Universe and the Big Bang Hubbles law Hubbles law v expansion = H 0 distance v expansion = H 0 distance Hubbles constant Hubbles constant H 0 = h 100 km s -1 Mpc -1 H 0 = h 100 km s -1 Mpc -1 Measured value Measured value h = h = Expansion age of the universe t 0 H years 1 Mpc = lyr 1 Mpc = lyr = cm = cm Photons Photons Neutrinos Neutrinos Charged Leptons Charged Leptons Quarks Quarks Gluons Gluons W- and Z-Bosons W- and Z-Bosons Higgs Particles Higgs Particles Gravitons Gravitons Dark-Matter Particles Dark-Matter Particles Topological defects Topological defects … …

10 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Big Bang

11 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Cosmic Expansion Space between galaxies grows Space between galaxies grows Galaxies (stars, people) stay the same Galaxies (stars, people) stay the same (dominated by local gravity (dominated by local gravity or by electromagnetic forces) or by electromagnetic forces) Cosmic scale factor today: a = 1 Cosmic scale factor today: a = 1 Cosmic Scale Factor Cosmic Redshift Wavelength of light gets stretched Wavelength of light gets stretched Suffers redshift Suffers redshift Redshift today: z = 0 Redshift today: z = 0

12 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Friedman Equation & Einsteins Greatest Blunder Friedmann equation for Friedmann equation for Hubbles expansion rate Hubbles expansion rate YakovBorisovichZeldovich Quantum field theory of elementary particles Quantum field theory of elementary particles inevitably implies vacuum fluctuations because inevitably implies vacuum fluctuations because of Heisenbergs uncertainty relation, of Heisenbergs uncertainty relation, e.g. E and B fields can not simultaneously vanish e.g. E and B fields can not simultaneously vanish Ground state (vacuum) provides gravitating energy Ground state (vacuum) provides gravitating energy Vacuum energy vac is equivalent to Vacuum energy vac is equivalent to Cosmological constant (new constant of nature) allows for a static universe by global anti-gravitation Newtons constant Density of gravitating mass & energy Curvature term is very small or zero (Euclidean spatial geometry)

13 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Generic Solutions of Friedmann Equation Radiation p = /3 a 4 a 4 a(t) t 1/2 Dilution of radiation and redshift of energy Matter p = 0 a 3 a 3 a(t) t 2/3 Dilution of matter Vacuumenergy p = = const = const Vacuum energy not diluted by expansion Equation of state Behavior of energy-density under cosmic expansion Evolution of cosmic scale factor Energy-momentum tensor of perfect fluid with density and pressure p

14 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Hubble Diagram Supernova Ia Supernova Ia as cosmological as cosmological standard candles standard candles Redshift Apparent Brightness Hubbles orginal data (1929) z = 0.003

15 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Hubble Diagram Accelerated expansion ( M = 0.3, = 0.7) Decelerated expansion ( M = 1) Supernova Ia Supernova Ia as cosmological as cosmological standard candles standard candles

16 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Latest Supernova Data Kowalski et al., Improved cosmological constraints from new, old and combined supernova datasets, arXiv:

17 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Expansion of Different Cosmological Models Time (billion years) Adapted from Bruno Leibundgut Cosmic scale factor a today M = 0 M = 0 9 M = 1 M = 1 7 M > 1 M > 1 M = 0.3 M = 0.3 = 0.7 = 0.7

18 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, ChinaTitle Dark Energy 73% (Cosmological Constant) Neutrinos Neutrinos 0.1 2% 0.1 2% Dark Matter 23% Ordinary Matter 4% (of this only about 10% luminous) 10% luminous)

19 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Neutrino Thermal Equilibrium Cosmic expansion rate Friedmann equation Radiation dominates Expansion rate Condition for thermal equilibrium: > H Neutrinos are in thermal equilibrium for T 1 MeV corresponding to t 1 sec Neutrino reactions Dimensional analysis of reaction rate if T m W,Z Examples for neutrino processes GFGFGFGF

20 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Present-Day Neutrino Density Neutrino decoupling (freeze out) H ~ H ~ T 2.4 MeV (electron flavor) T 2.4 MeV (electron flavor) T 3.7 MeV (other flavors) T 3.7 MeV (other flavors) Redshift of Fermi-Dirac distribution (nothing changes at freeze-out) Temperature scales with redshift T = T (z+1) Electron-positron annihilation beginning at T m e = MeV QED plasma is strongly coupled QED plasma is strongly coupled Stays in thermal equilibrium (adiabatic process) Stays in thermal equilibrium (adiabatic process) Entropy of e + e transfered to photons Entropy of e + e transfered to photons Redshift of neutrino and photon thermal distributions so that today we have for massless neutrinos

21 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Cosmological Limit on Neutrino Masses A classic paper: A classic paper: Gershtein & Zeldovich Gershtein & Zeldovich JETP Lett. 4 (1966) 120 JETP Lett. 4 (1966) 120 Cosmic neutrino sea ~ 112 cm -3 neutrinos + anti-neutrinos per flavor m 40 eV m 40 eV For all stable flavors

22 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Weakly Interacting Particles as Dark Matter However, the idea of However, the idea of weakly interacting massive weakly interacting massive particles as dark matter particles as dark matter is now standard is now standard More than 30 years ago, More than 30 years ago, beginnings of the idea of beginnings of the idea of weakly interacting particles weakly interacting particles (neutrinos) as dark matter (neutrinos) as dark matter Massive neutrinos are no Massive neutrinos are no longer a good candidate longer a good candidate (hot dark matter) (hot dark matter)

23 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China What is wrong with neutrino dark matter? Galactic Phase Space (Tremaine-Gunn-Limit) m > eV Maximum mass density of a degenerate Fermi gas m > eV Spiral Spiral galaxies galaxies Dwarf Dwarf galaxies galaxies Nus are Hot Dark Matter Nus are Hot Dark Matter Ruled out Ruled out by structure formation by structure formation Neutrino Free Streaming (Collisionless Phase Mixing) At T < 1 MeV neutrino scattering in early universe ineffective At T < 1 MeV neutrino scattering in early universe ineffective Stream freely until non-relativistic Stream freely until non-relativistic Wash out density contrasts on small scales Wash out density contrasts on small scales NeutrinosNeutrinos Over-density

24 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Sky Distribution of Galaxies (XMASS XSC)

25 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China A Slice of the Universe Galaxy distribution from the CfA redshift survey [ApJ 302 (1986) L1] Cosmic Stick Man ~ 185 Mpc

26 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China 2dF Galaxy Redshift Survey (2002) ~ 1300 Mpc

27 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China SDSS Survey

28 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Generating the Primordial Density Fluctuations Zero-point fluctuations of quantum fields are stretched and frozen Early phase of exponential expansion (Inflationary epoch) Cosmic density fluctuations are frozen quantum fluctuations

29 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Gravitational Growth of Density Perturbations The dynamical evolution of small perturbations is independent for each Fourier mode k For pressureless, For pressureless, nonrelativistic matter nonrelativistic matter (cold dark matter) (cold dark matter) naively expect naively expect exponential growth exponential growth Only power-law Only power-law growth in expanding growth in expanding universe universe Matter dominates a t 2/3 a t 2/3 Sub-horizon H 1 H 1Super-horizon k const k const k a 2 t k a 2 t k a t 2/3 k a t 2/3 Radiation dominates a t 1/2 a t 1/2

30 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Structure Formation by Gravitational Instability

31 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Redshift Surveys vs. Millenium Simulation

32 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Power Spectrum of Density Fluctuations Field of density fluctuations Fourier transform Power spectrum essentially square of Fourier transformation Power spectrum is Fourier transform of two-point correlation function (x=x 2 x 1 ) with the -function Gaussian random field (phases of Fourier modes k uncorrelated) is fully characterized by the power spectrum or equivalently by

33 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Processed Power Spectrum in Cold Dark Matter Scenario Primordial spectrum usually assumed to be of power-law form Harrison-Zeldovich (flat) spectrum n 1 n 1 expected from inflation (actually slightly less than 1, as confirmed than 1, as confirmed by precision data) by precision data) Primordialspectrum Suppressed by stagnation during radiation phase

34 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Power Spectrum of Cosmic Density Fluctuations

35 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Cosmic Microwave Background Radiation Discovery of 2.7 Kelvin Cosmic microwave background radiation by Penzias and Wilson in 1965 (Nobel Prize 1978) Beginning of big-bang cosmology Robert W. Wilson Born 1936 Arno A. Penzias Born 1933

36 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Last Scattering Surface Redshift z Here & Now Horizon

37 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China COBE Temperature Map of the Cosmic Microwave Background T = K (uniform on the sky) Dynamical range T = mK ( T/ T ) Dipole temperature distribution from Doppler effect caused by our motion relative to the cosmic frame Dynamical range T = 18 K ( T/ T ) Primordial temperature fluctuations

38 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China COBE Satellite John C. Mather Born 1946 George F. Smoot Born 1945 Nobel Prize 2006

39 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Sky map of CMBR temperature fluctuations Power Spectrum of CMBR Temperature Fluctuations Multipole expansion Angular power spectrum Acoustic Peaks

40 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Flat Universe from CMBR Angular Fluctuations tot = tot = Spergel et al. (WMAP Collaboration) astro-ph/ Triangulation with acoustic peak Known physical Known physical size of acoustic peak size of acoustic peak at decoupling (z 1100) at decoupling (z 1100)Measured angular size today (z = 0) flat (Euclidean) negative curvature positive curvature

41 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Latest CMB Results (WMAP-5 and Others) Komatsu et al., arXiv:

42 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Best-Fit Universe Perlmutter Physics Today (Apr. 2003) Kowalski et al. arXiv:

43 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Concordance Model of Cosmology A Friedmann-Lemaître-Robertson-Walker model with the following parameters perfectly describes the global properties of the universe The observed large-scale structure and CMBR temperature fluctuations are perfectly accounted for by the gravitational instability mechanism with the above ingredients and a power-law primordial spectrum of adiabatic density fluctuations (curvature fluctuations) P(k) k n Expansion rate Age Vacuum energy Baryonic matter Power-law index Spatial curvature Cold Dark Matter

44 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Structure Formation in the Universe SmoothStructured Structure forms by Structure forms by gravitational instability gravitational instability of primordial of primordial density fluctuations density fluctuations A fraction of hot dark matter A fraction of hot dark matter suppresses small-scale structure suppresses small-scale structure

45 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Structure Formation with Hot Dark Matter Troels Haugbølle, Neutrinos with m = 6.9 eV Standard CDM Model Structure fromation simulated with Gadget code Cube size 256 Mpc at zero redshift

46 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Neutrino Free Streaming: Transfer Function Hannestad, Neutrinos in Cosmology, hep-ph/ Transfer function P(k) = T(k) P 0 (k) P(k) = T(k) P 0 (k) Effect of neutrino free streaming on small scales T(k) = 1 8 / M T(k) = 1 8 / M valid for 8 / M 1 8 / M 1 Power suppression for FS 100 Mpc/h m = 0 m = 0.3 eV m = 1 eV

47 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Power Spectrum of Cosmic Density Fluctuations

48 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Some Recent Cosmological Limits on Neutrino Masses m /eV m /eV (limit 95%CL) Data / Priors Spergel et al. (WMAP) 2003 [astro-ph/ ] [astro-ph/ ]0.69 WMAP-1, 2dF, HST, 8 Hannestad 2003 [astro-ph/ ] [astro-ph/ ]1.01 WMAP-1, CMB, 2dF, HST Crotty et al [hep-ph/ ] [hep-ph/ ] WMAP-1, CMB, 2dF, SDSS & HST, SN Hannestad 2004 [hep-ph/ ] [hep-ph/ ]0.65 WMAP-1, SDSS, SN Ia gold sample, Ly- data from Keck sample Seljak et al [astro-ph/ ] [astro-ph/ ]0.42 WMAP-1, SDSS, Bias, Ly- data from SDSS sample Spergel et al [hep-ph/ ] [hep-ph/ ]0.68 WMAP-3, SDSS, 2dF, SN Ia, 8 Seljak et al [astro-ph/ ] [astro-ph/ ]0.14 WMAP-3, CMB-small, SDSS, 2dF, SN Ia, BAO (SDSS), Ly- (SDSS) Hannestad et al [hep-ph/ ] [hep-ph/ ]0.30 WMAP-1, CMB-small, SDSS, 2dF, SN Ia, BAO (SDSS), Ly- (SDSS)

49 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Lyman-alpha Forest Hydrogen clouds absorb from QSO Hydrogen clouds absorb from QSO continuum emission spectrum continuum emission spectrum Absorption dips at Ly- wavelengh Absorption dips at Ly- wavelengh corresponding to redshift corresponding to redshiftwww.astro.ucla.edu/~wright/Lyman-alpha-forest.html Examples for Lyman- forest in low- and high-redshift quasars

50 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Weak Lensing A Powerful Probe for the Future UnlensedLensed Distortion of background images by foreground matter

51 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Sensitivity Forecasts for Future LSS Observations Kaplinghat, Knox & Song, astro-ph/ σ (m ν ) ~ 0.15 eV (Planck) σ (m ν ) ~ eV (CMBpol) CMB lensing Lesgourgues, Pastor & Perotto, hep-ph/ Planck & SDSS m > 0.21 eV detectable m > 0.21 eV detectable at 2 at 2 m > 0.13 eV detectable m > 0.13 eV detectable at 2 at 2 Ideal CMB & 40 x SDSS Abazajian & Dodelson astro-ph/ Future weak lensing survey 4000 deg 2 σ (m ν ) ~ 0.1 eV Wang, Haiman, Hu, Khoury & May, astro-ph/ Weak-lensing selected sample of > 10 5 clusters σ (m ν ) ~ 0.03 eV Hannestad, Tu & Wong astro-ph/ Weak-lensing tomography (LSST plus Planck) σ (m ν ) ~ 0.05 eV

52 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Fermion Mass Spectrum meVeVkeVMeVGeVTeV dsb Quarks (Q = 1/3) uct Quarks (Q = 2/3) Charged Leptons (Q = 1) e All flavors 3 Neutrinos

53 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Weighing Neutrinos with KATRIN Sensitive to common mass scale m Sensitive to common mass scale m for all flavors because of small mass for all flavors because of small mass differences from oscillations differences from oscillations Best limit from Mainz und Troitsk Best limit from Mainz und Troitsk m < 2.2 eV (95% CL) m < 2.2 eV (95% CL) KATRIN can reach 0.2 eV KATRIN can reach 0.2 eV Under construction Under construction Data taking foreseen to begin in 2009 Data taking foreseen to begin in 2009

54 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China KATRIN Approaching (25 Nov 2006)

55 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Lee-Weinberg Curve for Neutrinos and Axions log( a ) log(m a ) M 10 eV 10 eV 10 eV CDM HDM Axions Thermal Relics Non-ThermalRelics log( ) log(m ) M 10 eV CDMHDM 10 GeV Neutrinos & WIMPs Thermal Relics

56 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Axion Hot Dark Matter from Thermalization after QCD Freeze-out temperature Cosmic thermal degrees of freedom at axion freeze-out Cosmic thermal degrees of freedoma Chang & Choi, PLB 316 (1993) 51 Hannestad, Mirizzi & Raffelt, JCAP 07 (2005) f a (GeV)

57 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Low-Mass Particle Densities in the Universe Photons Neutrinos Axions (QCD) ALPs (two photon vertex) 410 cm 3 Cosmic microwave background radiation T = K Freeze out at T ~ 2 3 MeV before e e annihilation 112 cm 3 ( in one flavor) For f a ~ 10 7 GeV (m a ~ 1 eV) Freeze out at T ~ 80 MeV ( a interaction) ~ 50 cm 3 Primakoff freeze out (g a ~ GeV 1 ) T T QCD ~ 200 MeV < 10 cm 3 No useful hot dark matter limit on ALPs in the CAST search range No useful hot dark matter limit on ALPs in the CAST search range (too few of them today if they couple only by two-photon vertex) (too few of them today if they couple only by two-photon vertex) Axion mass limit comparable to limit on m Axion mass limit comparable to limit on m (Axion number density comparable to one neutrino flavor) (Axion number density comparable to one neutrino flavor)

58 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Axion Hot Dark Matter Limits from Precision Data m a < 1.0 eV (95% CL) m a < 0.4 eV (95% CL) WMAP-5, LSS, BAO, SNIa WMAP-3, small-scale CMB, HST, BBN, LSS, Ly- HST, BBN, LSS, Ly- Hannestad, Mirizzi, Raffelt & Wong [arXiv: ] Melchiorri, Mena & Slosar [arXiv: ] Marginalizing over unknown neutrino hot dark matter component Credible regions for neutrino plus axion hot dark matter (WMAP-5, LSS, BAO, SNIa) Hannestad, Mirizzi, Raffelt & Wong [arXiv: ] Dashed (red) curves: Same with WMAP-3 From HMRW [arXiv: ]

59 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, China Directsearch Too much cold dark matter TelescopeExperiments Globular clusters (a- -coupling) Too many events Too much energy loss SN 1987A (a-N-coupling) Axion Bounds [GeV] f a [GeV] f aeVkeVmeV eV eV mamamama Too much hot dark matter CASTADMX

60 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, Sept 2008, Beijing, ChinaTitle Inner space and outer space are closely related


Download ppt "Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen."

Similar presentations


Ads by Google