Presentation is loading. Please wait.

Presentation is loading. Please wait.

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, 21-25 April 2008, Avignon, FranceAxions Georg G. Raffelt, Max-Planck-Institut.

Similar presentations


Presentation on theme: "Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, 21-25 April 2008, Avignon, FranceAxions Georg G. Raffelt, Max-Planck-Institut."— Presentation transcript:

1 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, FranceAxions Georg G. Raffelt, Max-Planck-Institut für Physik, München Motivation, Limits and Searches Axions PONT dAvignon, April 2008, Avignon, France

2 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Axion Physics in a Nut Shell Cosmology CosmicString In spite of small mass, axions In spite of small mass, axions are born non-relativistically are born non-relativistically (non-thermal relics) (non-thermal relics) Cold dark matter Cold dark matter candidate candidate m a ~ eV m a ~ eV Search for Axion Dark Matter S N a B ext Microwave resonator Microwave resonator (1 GHz = 4 eV) (1 GHz = 4 eV) Primakoff Primakoff conversion conversion Particle-Physics Motivation CP conservation in QCD by CP conservation in QCD by Peccei-Quinn mechanism Peccei-Quinn mechanism For f a f axions are invisible For f a f axions are invisible and very light and very light Axions a ~ 0 Axions a ~ 0 m f m a f a m f m a f a a Solar and Stellar Axions Axions thermally produced in stars, Axions thermally produced in stars, e.g. by Primakoff production e.g. by Primakoff production Limits from avoiding excessive Limits from avoiding excessive energy drain energy drain Search for solar axions (CAST, Sumico) Search for solar axions (CAST, Sumico) a

3 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Standard Standard QCD Lagrangian QCD Lagrangian contains contains a CP violating term a CP violating term The CP Problem of Strong Interactions Induces a neutron Induces a neutron electric dipole moment electric dipole moment (EDM) much in excess (EDM) much in excess of experimental limits of experimental limits Characterizes degenerate QCD ground state ( vacuum) Phase of Quark Mass Matrix Why so small ?

4 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Dynamical Solution Peccei & Quinn Wilczek Weinberg 1978 Re-interpret as Re-interpret as a dynamical variable a dynamical variable (scalar field) (scalar field) Peccei-Quinn scale, Axion decay constant Pseudo-scalar axion field Pion decay constant Axions generically couple Axions generically couple to gluons and mix with 0 to gluons and mix with 0 gluon a gluon a V(a) Potential (mass term) induced by L CP drives a(x) to CP-conserving minimumCP-symmetry dynamically restored

5 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Peccei-Quinn Mechanism Proposed in 1977

6 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Gravity Symmetricrelative to gravity Pool table New degree of freedom Axion Axion _ (Weinberg 1978, Wilczek 1978) Axis Symmetrydynamicallyrestored (Peccei & Quinn 1977) (Peccei & Quinn 1977) The Pool Table Analogy P.Sikivie, Physics Today, Dec. 1996, pg. 22 SymmetrybrokenFloor inclined inclined fafafafa

7 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France 30 Years of Axions

8 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France The Cleansing Axion I named them after a laundry detergent, since they clean up detergent, since they clean up a problem with an axial current. a problem with an axial current. (Nobel lecture 2004, written version) Frank Wilczek

9 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Windows of Opportunity AxionsAlternatives Cosmic cold dark matter candidate Cosmic cold dark matter candidate Direct detection possible Direct detection possible Supersymmetric particles Supersymmetric particles Superheavy particles Superheavy particles Sterile Neutrinos Sterile Neutrinos Many others … Many others … (but usually not experimentally (but usually not experimentally accessible) accessible) Search for new physics at E TeV Search for new physics at E TeV in low-energy experiments in low-energy experiments (Axions Nambu-Goldstone boson of (Axions Nambu-Goldstone boson of spontaneously broken symmetry) spontaneously broken symmetry) Neutrino masses (see-saw) Neutrino masses (see-saw) Proton decay Proton decay Neutron electric dipole moment Neutron electric dipole moment Deviation from Newtons Law Deviation from Newtons Law (e.g. large extra dimensions) (e.g. large extra dimensions) Solve strong CP problem Solve strong CP problem by Peccei-Quinn by Peccei-Quinn dynamical symmetry restoration dynamical symmetry restoration Massless up-quark Massless up-quark Spontaneous CP violation Spontaneous CP violation set at some high energy scale set at some high energy scale (no radiative corrections) (no radiative corrections)

10 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Axions as a Research Topic Papers in SPIRES that cite one of the two original Peccei and Quinn papers or Papers in SPIRES that cite one of the two original Peccei and Quinn papers or Weinbergs or Wilczeks paper or with axion or axino in their title Weinbergs or Wilczeks paper or with axion or axino in their title (total of 3186 papers up to 2007) (total of 3186 papers up to 2007)

11 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Axions as Pseudo Nambu-Goldstone Bosons The realization of the Peccei-Quinn mechanism involves a new chiral The realization of the Peccei-Quinn mechanism involves a new chiral U(1) symmetry, spontaneously broken at a scale f a U(1) symmetry, spontaneously broken at a scale f a Axions are the corresponding Nambu-Goldstone mode Axions are the corresponding Nambu-Goldstone mode E f a U PQ (1) spontaneously broken U PQ (1) spontaneously broken Higgs field settles in Higgs field settles in Mexican hat Mexican hat a V(a) E QCD f a U PQ (1) explicitly broken U PQ (1) explicitly broken by instanton effects by instanton effects Mexican hat tilts Mexican hat tilts Axions acquire a mass Axions acquire a mass a V(a) =0 =0 _

12 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France From Standard to Invisible Axions Standard Model Standard Axion Weinberg 1978, Wilczek 1978 Invisible Axion Kim 1979, Shifman, Vainshtein, Zakharov 1980, Dine, Fischler, Srednicki 1981 Zhitnitsky 1980 All Higgs degrees of freedom are used up Peccei-Quinn scale f a = Peccei-Quinn scale f a = electroweak scale f ew electroweak scale f ew Two Higgs fields, Two Higgs fields, separately giving mass separately giving mass to up-type quarks and to up-type quarks and down-type quarks down-type quarks Additional Higgs with Additional Higgs with f a f ew f a f ew Axions very light and Axions very light and and very weakly and very weakly interacting interacting No room for axions Axions quickly ruled out experimentally and astrophysically New scale required New scale required Axions can be Axions can be cold dark matter cold dark matter Can be detected Can be detected

13 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Axion Properties Mass Nucleon coupling (axial vector) N N a Electron coupling (optional) e e a Gluon coupling (Generic property) a G G Photon coupling a Pion coupling a

14 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Supernova 1987A Energy-Loss Argument Neutrinosphere Neutrino Neutrino diffusion diffusion Late-time signal most sensitive observable Emission of very weakly interacting particles would steal energy from the neutrino burst and shorten it. (Early neutrino burst powered by accretion, not sensitive to volume energy loss.) not sensitive to volume energy loss.) Volume emission Volume emission of novel particles of novel particles SN 1987A neutrino signal

15 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Axions as Pseudo Nambu-Goldstone Bosons The realization of the Peccei-Quinn mechanism involves a new chiral The realization of the Peccei-Quinn mechanism involves a new chiral U(1) symmetry, spontaneously broken at a scale f a U(1) symmetry, spontaneously broken at a scale f a Axions are the corresponding Nambu-Goldstone mode Axions are the corresponding Nambu-Goldstone mode E f a U PQ (1) spontaneously broken U PQ (1) spontaneously broken Higgs field settles in Higgs field settles in Mexican hat Mexican hat a V(a) E QCD f a U PQ (1) explicitly broken U PQ (1) explicitly broken by instanton effects by instanton effects Mexican hat tilts Mexican hat tilts Axions acquire a mass Axions acquire a mass a V(a) =0 =0 _

16 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Series of Papers on Axion Cosmology in PLB 120 (1983) Page 127

17 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Series of Papers on Axion Cosmology in PLB 120 (1983) Page 133

18 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Series of Papers on Axion Cosmology in PLB 120 (1983) Page 137

19 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Killing Two Birds with One Stone Peccei-Quinn mechanism Solves strong CP problem Solves strong CP problem May provide dark matter May provide dark matter in the form of axions in the form of axions

20 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Production of Cold Axion Population in the Early Universe Approximate axion Approximate axion cold dark matter density cold dark matter density Inflation after PQ symmetry breaking Homogeneous mode oscillates after T QCD T QCD Dependence on initial misalignment angle Reheating restores PQ symmetry Cosmic strings of broken U PQ (1) Cosmic strings of broken U PQ (1) form by Kibble mechanism form by Kibble mechanism Radiate long-wavelength axions Radiate long-wavelength axions a independent of initial conditions a independent of initial conditions Inhomogeneities of axion field large, self-couplings lead to formation of mini-clusters Typical properties Mass ~ M sun Mass ~ M sun Radius ~ cm Radius ~ cm Mass fraction up to several 10% Mass fraction up to several 10% Isocurvature fluctuations from large Isocurvature fluctuations from large quantum fluctuations of massless quantum fluctuations of massless axion field created during inflation axion field created during inflation Strong CMBR bounds on isocurvature Strong CMBR bounds on isocurvature fluctuations fluctuations Scale of inflation required to be Scale of inflation required to be very small I GeV very small I GeV [Beltrán, García-Bellido & Lesgourgues hep-ph/ ] hep-ph/ ]

21 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Strings form by Kibble mechanism after break-down of U PQ (1) Small loops form by self-intersection Axions from Cosmic Strings Paul Shellard

22 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Axion Mini Clusters The inhomogeneities of the axion field are large, leading to bound objects, axion mini clusters. [Hogan & Rees, PLB 205 (1988) 228.] Self-coupling of axion field crucial for dynamics. Typical mini cluster properties: Mass ~ M sun Radius ~ cm Mass fraction up to several 10% Potentially detectable with Potentially detectable with gravitational femtolensing gravitational femtolensing Distribution of axion energy density. 2-dim slice of comoving length 0.25 pc [Kolb & Tkachev, ApJ 460 (1996) L25]

23 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Inflation, Axions, and the Anthropic Principle Late inflation scenario of axion cosmology Initial misalignment angle constant in our patch of the universe Initial misalignment angle constant in our patch of the universe Dark matter density determined by the initial random number i Dark matter density determined by the initial random number i Is different in different patches of the universe Is different in different patches of the universe Dark matter fraction not calculable from first principles Dark matter fraction not calculable from first principles Random number chosen by process of spontaneous symmetry breaking Random number chosen by process of spontaneous symmetry breaking Natural case for applying anthropic reasoning for the observed dark matter density relative to baryons Linde, Inflation and Axion Cosmology, PLB 201:437, 1988 Linde, Inflation and Axion Cosmology, PLB 201:437, 1988 Tegmark, Aguirre, Rees & Wilczek, Tegmark, Aguirre, Rees & Wilczek, Dimensionless constants, cosmology and other dark matters, Dimensionless constants, cosmology and other dark matters, PRD 73, (2006) [arXiv:astro-ph/ ] PRD 73, (2006) [arXiv:astro-ph/ ]

24 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Axion Hot Dark Matter from Thermalization after QCD Freeze-out temperature Cosmic thermal degrees of freedom at axion freeze-out Cosmic thermal degrees of freedoma Chang & Choi, PLB 316 (1993) f a (GeV)

25 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Lee-Weinberg Curve for Neutrinos and Axions log( a ) log(m a ) M 10 eV 10 eV 10 eV CDM HDM Axions Thermal Relics Non-ThermalRelics log( ) log(m ) M 10 eV CDMHDM 10 GeV Neutrinos & WIMPs Thermal Relics

26 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Axion Hot Dark Matter Limits from Precision Data m a < 1.0 eV (95% CL) m a < 0.4 eV (95% CL) WMAP-5, LSS, BAO, SNIa WMAP-3, small-scale CMB, HST, BBN, LSS, Ly- HST, BBN, LSS, Ly- Hannestad, Mirizzi, Raffelt & Wong [arXiv: ] Melchiorri, Mena & Slosar [arXiv: ] Marginalizing over unknown neutrino hot dark matter component Credible regions for neutrino plus axion hot dark matter (WMAP-5, LSS, BAO, SNIa) Hannestad, Mirizzi, Raffelt & Wong [arXiv: ]

27 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Directsearch Too much cold dark matter TelescopeExperiments Globular clusters (a- -coupling) Too many events Too much energy loss SN 1987A (a-N-coupling) Axion Bounds [GeV] f a [GeV] f aeVkeVmeV eV eV mamamama Too much hot dark matter CASTADMX

28 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Experimental Tests of the Invisible Axion Primakoff effect: Axions-photon transitions in external static E or B field (Originally discussed for 0 by Henri Primakoff 1951) by Henri Primakoff 1951) Pierre Sikivie: Macroscopic B-field can provide a large coherent transition rate over a big volume (low-mass axions) Axion helioscope: Axion helioscope: Look at the Sun through a dipole Look at the Sun through a dipole magnet magnet Axion haloscope: Axion haloscope: Look for dark-matter axions with Look for dark-matter axions with A microwave resonant cavity A microwave resonant cavity

29 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Search for Galactic Axions (Cold Dark Matter) Power Frequency mamamama Axion Signal Thermal noise of cavity & detector Power of galactic axion signal Microwave Energies Microwave Energies (1 GHz 4 eV) (1 GHz 4 eV) DM axions DM axions Velocities in galaxy Velocities in galaxy Energies therefore Energies therefore m a = eV v a 10 3 c E a ( ) m a Axion Haloscope (Sikivie 1983) B ext 8 Tesla MicrowaveResonator Q 10 5 Primakoff Conversion a B ext Cavityovercomesmomentummismatch

30 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Axion Dark Matter Searches Limits/sensitivities, assuming axions are the galactic dark matter 1. Rochester-Brookhaven- 1. Rochester-Brookhaven- Fermilab Fermilab PRD 40 (1989) 3153 PRD 40 (1989) University of Florida PRD 42 (1990) 1297 PRD 42 (1990) US Axion Search (Livermore) (Livermore) ApJL 571 (2002) L27 ApJL 571 (2002) L27 4. CARRACK I (Kyoto) preliminary preliminary hep-ph/ hep-ph/ ADMX (Livermore) foreseen foreseen e.g. Rev. Mod. Phys. e.g. Rev. Mod. Phys. 75 (2003) (2003) 777 5

31 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France ADMX (G.Carosi, Fermilab, May 2007)

32 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France ADMX (G.Carosi, Fermilab, May 2007)

33 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France ADMX (G.Carosi, Fermilab, May 2007)

34 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France ADMX (G.Carosi, Fermilab, May 2007) Renewed ADMX data taking has begun on 28 March 2008 (Same day as CAST He-3 began)

35 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France ADMX (G.Carosi, Fermilab, May 2007)

36 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Fine Structure in Axion Spectrum Axion distribution on a 3-dim sheet in 6-dim phase space Axion distribution on a 3-dim sheet in 6-dim phase space Is folded up by galaxy formation Is folded up by galaxy formation Velocity distribution shows narrow peaks that can be resolved Velocity distribution shows narrow peaks that can be resolved More detectable information than local dark matter density More detectable information than local dark matter density P.Sikivie & collaborators

37 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Search for Solar Axions a Sun Primakoffproduction Axion Helioscope (Sikivie 1983) Magnet S N a Axion-Photon-Oscillation Tokyo Axion Helioscope (Sumico) Tokyo Axion Helioscope (Sumico) (Results since 1998, up again 2008) (Results since 1998, up again 2008) è CERN Axion Solar Telescope (CAST) (Data since 2003) (Data since 2003) Axion flux Axion flux Alternative technique: Alternative technique: Bragg conversion in crystal Bragg conversion in crystal Experimental limits on solar axion flux Experimental limits on solar axion flux from dark-matter experiments from dark-matter experiments (SOLAX, COSME, DAMA,...) (SOLAX, COSME, DAMA,...)

38 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Tokyo Axion Helioscope (Sumico) S.Moriyama, M.Minowa, T.Namba, Y.Inoue, Y.Takasu & A.Yamamoto, PLB 434 (1998) 147 ~ 3 m

39 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Results and Plans of Tokyo Axion Helioscope (Sumico) S. Inoue at TAUP 07

40 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Extending to higher mass values with gas filling Axion-photon transition probability Axion-photon momentum transfer Transition suppressed for qL 1 Gas filling: Give photons a refractive mass to restore full transition strength (~ MSW effect) (n e electron density) (n e electron density) He 4 vapour pressure at 1.8 K

41 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France LHC Magnet Mounted as a Telescope to Follow the Sun

42 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France CAST at CERN

43 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France CAST Focussing X-Ray Telescope One spare mirror system from the failed Abrixas x-ray satellite From 43 mm (LHC magnet aperture) to ~3 mm From 43 mm (LHC magnet aperture) to ~3 mm Signal/background improvement > 100 Signal/background improvement > 100 Signal and background simultaneously measured Signal and background simultaneously measured

44 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Sun Spot on CCD with X-Ray Telescope

45 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Limits from CAST-I and CAST-II CAST-I results: PRL 94: (2005) and JCAP 0704 (2007) 010 CAST-II results (He-4 filling): preliminary

46 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Axion mass m a [eV] Axion-photon-coupling g a [GeV -1 ] Future DMSearch +Gas CAST Sensitivity HBStars +Gas PVLAS expected Tokyo Helioscope Limits on Axion-Photon-Coupling PVLAS expected Tokyo Helioscope Helioseismology Telescope Laser KSVZ model DFSZ model Axion Line PVLASSignature

47 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, FranceAlps Axion-like particles (ALPs) (Pseudo)-scalar particles with a two-photon vertex

48 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Particles with Two-Photon Coupling Particles with two-photon vertex: Neutral pions ( 0 ), Gravitons Neutral pions ( 0 ), Gravitons Axions (a) and similar hypothetical particles Axions (a) and similar hypothetical particles Two-photondecayPhotonCoalescence PrimakoffEffect Conversion of photons into Conversion of photons into pions, gravitons or axions, pions, gravitons or axions, or the reverse or the reverse Magnetically induced vacuum birefringence In addition to QED In addition to QED Cotton-Mouton-effect Cotton-Mouton-effect PVLAS experiment recently measured an effect ~ 10 4 larger than QED expectation (Signal now disproved)

49 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Dimming of Supernovae without Cosmic Acceleration? Axion-photon-oscillations in intergalactic B-field domains dim photon flux Axion-photon-oscillations in intergalactic B-field domains dim photon flux Effect grows linearly with distance Effect grows linearly with distance Saturates at equipartition between photons and axions (unlike grey dust) Saturates at equipartition between photons and axions (unlike grey dust) Mixing matrix Domain size ~ 1 Mpc Field strength ~ 1 nG a- -coupling ~ GeV 1 Axion mass < eV Photon energy ~ 1 eV Electron density ~ 10 7 cm 3 (average baryon density) Chromaticity depends sensitively on assumed values and distribution of n e and B Csáki, Kaloper & Terning (hep-ph/ , hep-ph/ , astro-ph/ ). Erlich & Grojean (hep-ph/ ). Deffayet, et al. (hep-ph/ ). Christensson & Fairbairn (astro-ph/ ). Mörtsell et al. (astro-ph/ ). Mörtsell & Goobar (astro-ph/ ). Bassett (astro-ph/ ). Ostman & Mörtsell (astro-ph/ ). Mirizzi, Raffelt & Serpico (astro-ph/ ).

50 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Cantatore 12

51 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France The PVLAS Dichroism Signal PVLAS, PRL 96: (2006), hep-ex/

52 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Latest PVLAS Results Zavattini et al., PRD 77:032006, 2008 [arXiv: ]

53 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Photon Regeneration Experiments Single pass Resonant cavities on generation & regenerationsidehep-ph/ Shining light through a wall

54 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France No Light Shining Through a Wall BMV Experiment, using a pulsed laser and pulsed magnetic field (Toulouse) Robilliard et al., arXiv: GammeV Experiment with a variable baseline (Fermilab) Chou et al., arXiv:

55 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, April 2008, Avignon, France Technological Applications of PVLAS Particles arXiv: v1 [hep-ph]


Download ppt "Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PONT dAvignon, 21-25 April 2008, Avignon, FranceAxions Georg G. Raffelt, Max-Planck-Institut."

Similar presentations


Ads by Google