Presentation is loading. Please wait.

Presentation is loading. Please wait.

Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Massive Neutrinos Georg Raffelt.

Similar presentations


Presentation on theme: "Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Massive Neutrinos Georg Raffelt."— Presentation transcript:

1 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Massive Neutrinos Georg Raffelt Max-Planck-Institut für Physik, München, Germany Georg Raffelt Max-Planck-Institut für Physik, München, Germany From Here to Infinity: Extending Frontiers in Cosmology A Weekend Symposium to Celebrate the Sixtieth Birthday of Joseph Silk Oxford, England, December 13-15, 2002 From Here to Infinity: Extending Frontiers in Cosmology A Weekend Symposium to Celebrate the Sixtieth Birthday of Joseph Silk Oxford, England, December 13-15, 2002 News from the Ghost Particles

2 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002AtmosphericSolarLSNDSystem Status of Evidence for Neutrino Oscillations StatusEstablishedEstablishedUnconfirmedTest Long Baseline KamLAND 12/2002 MiniBooNE 2004 ? Three mass eigenstates with m 1 << m 2 << m 3 ~ 50 meV (hierarchical) m 1 ~ m 2 ~ m 3 >> 50 meV (degenerate) Simplestinterpre-tation Experimental or StatisticalFluke Channel 0.9 1 0.2 0.6 0.001 0.03 LMA 0.2-2 or 6.5 Mutually inconsistent, even with a sterile neutrino Evidence for physics beyond flavor oscillations (CPT violation...) ? Implication A MiniBooNE confirmation of LSND would be another revolution. Too good to be true ?

3 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Kamland Reactor Neutrino Experiment (Japan) Japanese nuclear reactors 60 GW (20% world capacity) Witout Oscillations Witout Oscillations 2 Neutrino captures / day 2 Neutrino captures / day Data taking since Data taking since 22 January 2002 22 January 2002 First Kamland results earlier this week at Texas in Tuscany and hep-ex/0212021

4 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Three-Flavor Neutrino Parameters (Ignoring LSND) CP-violating phase CP-violating phase Atmospheric Chooz Limit SolarSolar 24 - 240 Atmospheric 1400 - 6000 3 ranges hep-ph/0211054 e e 1 SunNormal2 3 Atmosphere e e 1 SunInverted2 3 Atmosphere Tasks and Open Questions Precision for 12 and 23 Precision for 12 and 23 ( 12 < 45º and 23 45º ?) ( 12 < 45º and 23 45º ?) How large is 13 ? How large is 13 ? CP-violating phase ? CP-violating phase ? Mass ordering ? Mass ordering ? (normal vs inverted) (normal vs inverted) Absolute masses ? Absolute masses ? (hierarchical vs degenerate) (hierarchical vs degenerate) Dirac or Majorana ? Dirac or Majorana ? Tasks and Open Questions Precision for 12 and 23 Precision for 12 and 23 ( 12 < 45º and 23 45º ?) ( 12 < 45º and 23 45º ?) How large is 13 ? How large is 13 ? CP-violating phase ? CP-violating phase ? Mass ordering ? Mass ordering ? (normal vs inverted) (normal vs inverted) Absolute masses ? Absolute masses ? (hierarchical vs degenerate) (hierarchical vs degenerate) Dirac or Majorana ? Dirac or Majorana ?Cosmology

5 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Tritium Endpoint Spectrum Electron spectrum N(E) E m Scaled-up spectrometer (KATRIN) may reach 0.3 eV Currently in preparation - Results in > 5 years Mainz Experiment, PLB 460 (1999) 219 m < 2.8 eV (95% CL) m < 2.8 eV (95% CL) Troitsk Experiment, ibid. 227 m < 2.5 eV (95% CL) m < 2.5 eV (95% CL)Theseexperiments have reached 2.2 eV (Neutrino 2002) Tritium Beta Decay Endpoint energy 18.6 keV

6 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Cosmological Limit on Neutrino Masses A classic paper: A classic paper: Gershtein & Zeldovich Gershtein & Zeldovich JETP Lett. 4 (1966) 120 JETP Lett. 4 (1966) 120 Cosmic neutrino sea ~ 112 cm -3 neutrinos + anti-neutrinos per flavor m < 40 eV m < 40 eV For all stable flavors

7 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Neutrino Mass Limit from 2dF Galaxy Survey Elgaroy et al., Elgaroy et al., astro-ph/0204152 astro-ph/0204152 = 0.01 = 0.01 = 0 = 0 Similar limits based on the 2dF survey Hannestad Hannestad astro-ph/0205223 astro-ph/0205223 Lewis & Bridle Lewis & Bridle astro-ph/0205436 astro-ph/0205436 = 0.05 = 0.05 m < 2.2 eV m < 2.2 eV at 95% CL (statistical) Depends on priors for other parameters

8 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 PLANCK Sensitivity to Neutrino Mass Maximum temperature multipole that can be measured to cosmic-variance precision Maximum polarization multipole that can be measured to cosmic-variance precision 0.07 eV 0.13 eV 0.25 eV Steen Hannestad astro-ph/0211106 1 sensitivity to m 1 sensitivity to m

9 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 10 -2 10 -1 1 10 eV 10 -3 10 -2 10 -1 1 Assuming h = 0.75 Mass-Energy-Inventory of the Universe luminousTotalBaryons Dark Matter Tritium Mainz/Troitsk KATRIN, SDSS (Future) PLANCK+SDSS (Optimistic future) Super-KNeutrinos Neutrinos Super-K 2dF Galaxy Survey

10 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Additional active neutrinos beyond standard population of e,, of e,, How Many Relic Neutrinos? Sterile(right-handed)states Populated by L R L Rtransitions Electromagnetic dipole moments Excluded by energy loss of globular cluster stars Oscillations/collisions Hot/warm/cold DM possible Right-handed currents Excluded by energy loss of SN 1987A Dirac mass Not effective in eV range Additional families Excluded by Z 0 width (N = 3) Chemical potentials for e,, for e,, Possible Standard thermal population in one flavor Standard thermal population in one flavor

11 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 BBN Limits on Neutrino Flavors Burles, Nollett & Turner, astro-ph/9903300 At BBN one flavor At BBN one flavor contributes about contributes about 16% to cosmic 16% to cosmic mass-energy density mass-energy density Extra flavors modify Extra flavors modify expansion parameter expansion parameter accordingly accordingly Conservative limit N eff < 1 N eff < 13.43.23.0

12 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 BBN and Neutrino Chemical Potentials e beta effect can compensate expansion-rate effect of e beta effect can compensate expansion-rate effect of No significant BBN limit on neutrino number density No significant BBN limit on neutrino number density Energy density in one neutrino flavor with degeneracy parameter = /T Expansion Rate Effect (all flavors) Beta equilibrium effect for electron flavor Helium abundance essentially fixed by n/p ratio at beta freeze-out Effect on helium equivalent to N eff -18 e N eff < 1 N eff < 1 e < 0.06 e < 0.06

13 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Chemical Potentials and Flavor Oscillations Our knowledge of the cosmic nu Our knowledge of the cosmic nu density depends on the solution of density depends on the solution of the solar neutrino problem the solar neutrino problem KamLAND most relevant experiment KamLAND most relevant experiment Lunardini & Smirnov, hep-ph/0012056 Lunardini & Smirnov, hep-ph/0012056 Dolgov, Hansen, Pastor, Petcov, Raffelt Dolgov, Hansen, Pastor, Petcov, Raffelt & Semikoz, hep-ph/0201287 & Semikoz, hep-ph/0201287 Abazajian, Beacom & Bell, Abazajian, Beacom & Bell, astro-ph/0203442 astro-ph/0203442 Wong, hep-ph/0203180 Wong, hep-ph/0203180 no SMA or VAC SMA or VAC maybe LOW (depends on 13 ) LOW (depends on 13 ) yes Solar LMA solution Solar LMA solution Flavor equilibrium before n/p freeze out ? Stringent e limit applies to all flavors | e | 0.07 Cosmic neutrino density close to standard value Extra neutrino density N eff 0.0064 N eff 0.0064 Only one common nu chemical potential Flavor mixing (neutrino oscillations) Flavor lepton numbers not conserved

14 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Baryogenesis in the Early Universe Sakharov conditions for creating the Baryon Asymmetry of the Universe (BAU) C and CP violation C and CP violation Baryon number violation Baryon number violation Deviation from thermal equilibrium Deviation from thermal equilibrium Particle-physics standard model Violates C and CP Violates C and CP Violates B and L by EW instanton effects Violates B and L by EW instanton effects (B – L conserved) (B – L conserved) However, electroweak baryogenesis not quantitatively However, electroweak baryogenesis not quantitatively possible within particle-physics standard model possible within particle-physics standard model Works in SUSY models for small range of parameters Works in SUSY models for small range of parameters Andrei Sakharov 1921 - 1989 A.Riotto & M.Trodden: Recent progress in baryogenesis Ann. Rev. Nucl. Part. Sci. 49 (1999) 35

15 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Leptogenesis by Majorana Neutrino Decays A classic paper

16 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 See-Saw Model for Neutrino Masses Neutrinos Charged Leptons Lagrangian for Lagrangian for particle masses particle masses Dirac masses Dirac masses from coupling from coupling to standard to standard Higgs field Higgs field Heavy Heavy Majorana Majorana masses masses M j > 10 10 GeV M j > 10 10 GeV Diagonalize Diagonalize Light Majorana mass

17 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Equilibrium abundance of heavy Majorana neutrinos W. Buchmüller & M. Plümacher: Neutrino masses and the baryon asymmetry Int. J. Mod. Phys. A15 (2000) 5047-5086 Leptogenesis by Out-of-Equilibrium Decay CP-violating decays by CP-violating decays by interference of tree-level interference of tree-level with one-loop diagram with one-loop diagram Equilibrium abundance of heavy Majorana neutrinos Real abundance determined by decay rate Createdlepton-numberabundance Equilibrium abundance of heavy Majorana neutrinos Real abundance determined by decay rate

18 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Leptogenesis by Majorana Neutrino Decays In see-saw models for neutrino masses, out-of-equilibrium In see-saw models for neutrino masses, out-of-equilibrium decay of right-handed heavy Majorana neutrinos provides decay of right-handed heavy Majorana neutrinos provides source for CP- and L-violation source for CP- and L-violation Cosmological evolution: B = L = 0 early on B = L = 0 early on Thermal freeze-out of heavy Majorana neutrinos Thermal freeze-out of heavy Majorana neutrinos Out-of-equilibrium CP-violating decay creates net L Out-of-equilibrium CP-violating decay creates net L Shift L excess into B by sphaleron effects Shift L excess into B by sphaleron effects Sufficient deviation from equilibrium distribution of heavy Majorana neutrinos at freeze-out Limits on Limits on Yukawa Yukawa couplings couplings Limits on Limits on masses of masses of ordinary ordinary neutrinos neutrinos Requires Majorana neutrino masses below 0.2 eV Buchmüller, Di Bari & Plümacher, PLB 547 (2002) 128 [hep-ph/0209301]

19 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Leptogenesis – A Popular Research Topic Langacker, Peccei & Yanagida Langacker, Peccei & Yanagida Mod. Phys. Lett. A 1 (1986) 541 Mod. Phys. Lett. A 1 (1986) 541 Campbell, Davidson & Olive Campbell, Davidson & Olive NPB 399 (1993) 111 NPB 399 (1993) 111 Fukugita & Yanagida Fukugita & Yanagida PLB 174 (1986) 45 PLB 174 (1986) 45 Gherghetta & Jungmann PRD 48 (1993) 1546 Muryama & Yanagida PLB 322 (1994) 349 Dine, Randall & Thomas Dine, Randall & Thomas NPB 458 (1996) 291 NPB 458 (1996) 291 Worah PRD 53 (1996) 3902 Buchmüller & Plümacher Buchmüller & Plümacher PLB 389 (1996) 73 PLB 389 (1996) 73 Ma & Sarkar PRL 80 (1998) 5716 Jeannerot PRL 77 (1996) 3292 Lazarides, Schaefer & Shafi Lazarides, Schaefer & Shafi PRD 56 (1997) 1324 PRD 56 (1997) 1324 Plümacher NPB 530 (1998) 207 Lazarides & Shafi PRD 58 (1998) 071702 Flanz & Paschos PRD 58 (1998) 113009 Ellis, Lola & Nanopoulos PLB 452 (1999) 87 Berger & Brahmachari PRD 60 (1999) 073009 Carlier, Frére & Ling PRD 60 (1999) 096003 Akhmedov, Rubakov & Smirnov PRL 81 (1998) 1562 Giudice, Peloso, Riotto & Tkachev JHEP 9908 (1999) 014 Frére, Ling, Tytgat & v.Elewyck PRD 60 (1999) 016005 Barbieri, Creminelli, Strumia & Tetradis NPB 575 (2000) 61 Berger PRD 62 (2000) 013007 Hambye, Ma & Sarkar PRD 62 (2000) 015010 Goldberg PLB 474 (2000) 389 Asaka, Hamaguchi, Kawasaki & Yanagida PRD 61 (2000) 083512 Dick, Lindner, Ratz & Wright PRL 84 (2000) 4039 Lalakulich, Paschos & Flanz PRD 62 (2000) 053006 Rangarajan & Mishra PRD 61 (2000) 043509 Mangano & Miele PRD 62 (2000) 063514 Bastero-Gil & King PRD 63 (2001) 123509 Joshipura, Paschos & Rodejohann Joshipura, Paschos & Rodejohann NPB 611 (2001) 227 NPB 611 (2001) 227 Falcone & Tramontano Falcone & Tramontano PRD 63 (2001) 073007 PRD 63 (2001) 073007 Hambye, Ma & Sarkar Hambye, Ma & Sarkar NPB 602 (2001) 23 NPB 602 (2001) 23 Hirsch & King PRD 64 (2001) 113005 Branco, Morozumi, Nobre & Rebelo NPB 617 (2001) 475 AND MANY MORE... AND MANY MORE...

20 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Neutrinoless Decay 76 Ge 76 Se 76 As O+O+ O+O+ 2–2– 2–2– 2+2+ 2+2+ O+O+ O+O+ Some nuclei decay only by the mode, e.g. Some nuclei decay only by the mode, e.g. Half life ~ 10 21 yr Measuredquantity Best limit from 76 Ge 0 mode, enabled by Majorana mass Standard 2 mode

21 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Summary of Current Neutrinoless Decay Limits O.Cremonesi at Neutrino 2002

22 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Summary of Future Decay Projects O.Cremonesi at Neutrino 2002

23 Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Matter Inventory of the Universe Dark Energy ~ 70% (Cosmological Constant?) Dark Matter ~ 25% Baryonic Matter ~ 5% (~10% of this luminous) Neutrinos Neutrinos min. 0.1% min. 0.1% max. 6% max. 6%


Download ppt "Georg Raffelt, Max-Planck-Institut für Physik, München, GermanyFrom Here to Infinity, Oxford, England, 13-15 December 2002 Massive Neutrinos Georg Raffelt."

Similar presentations


Ads by Google