Download presentation

Presentation is loading. Please wait.

Published byChristian Moss Modified over 5 years ago

1
1

2
2

3
3

4
4

5
5 Degree of dominance = d/a No dominance: d/a = 0 Partial dominance: 0 1 The reference level in the metric model is the level c. This c is the average genotypic value of all possible homozygotes (nota bene: not the population mean !). Full homozygosity is reached only after a number of n = generations of selfing, hence, the models were termed F -model or better, F -metric. ( In some texts, the reference level is chosen as the average genotypic value of a F 2 -equilibrium population, leading to a somewhat different metric. In this case the metric is analogously termed F 2 -metric. )

6
6 Schön, C.C., 1993 AA-genotypes aa-genotypes +a -a High............Resistance............Low

7
7 Schön, C.C., 1993 a d

8
8

9
9

10
10 UMC33UMC128 Schön, C.C., 1993

11
11

12
12 It is of great importance whether a population (the per- formance of which is e.g. 18.40) changes its performance without (selection, mu- tation, drift etc., it means without) any reason. This is contradictory to the DUS critera (distinct- ness, uniformity, sta- bility; the reason here is EPISTASIS)

13
13 Albina-Locus Xantha-Locus Albina-Locus Xantha-Locus

14
14

15
15

16
16

17
17

18
18

19
19 2–loci-Model für n loci: n....54321Locus....EeddCCBbAA Any genotype Genotypic value: - (aa) 14 + (ad) 15 +... + (da) 23 - (da) 24 + (dd) 25 +... + a 1 + d 2 + a 3 – a 4 + d 5 +... + (ad) 12 + (aa) 13 cG i = From the single parameters a, d, (aa), (ad), (da) and (dd), a summation parameter can be built by simple addition. Here, we will elucidate the parameter system, the metric, based on several numerical examples and by experimental data sets. The genotypic values are ordered in the standard matrix form: aabbaaBbaaBB Aabb AaBb AaBB AAbbAABbAABB

20
20

21
21

22
22

24
24

25
25 Schierholt, Antje, 2000: Hoher Ölsäuregehalt (C18:1) im Samenöl: genetische Charakterisierung von Mutan- ten im Winterraps (Brassica napus L.). Dissertaion, Universität Göttingen.

26
26 Schierholt, Antje, 2000: Hoher Ölsäuregehalt (C18:1) im Samenöl: genetische Charakterisierung von Mutan-ten im Winterraps (Brassica napus L.). Dissertaion, Universität Göttingen. Example F 2 - ½(B 1 +B 2 )= ¼(aa) 12 i.e., 70.5 – ½ (65.1+72.7) = 1.6 thus,

28
28 (F-metric), no linkage F

29
29 0 1 2 3 4 5 6 7 8 9 10 Yield performance (t/ha) Ertragsleistung (t/ha) 0.000.250.500.751.00 Inbreeding coefficient, Inzuchtkoeffizient Paren- tal mean; F F1-hybrid F2- mean; BC1-mean F3-generation mean Any difference of F and the parental mean shows additiv-additiv - epistatic effects Any deviation from this linearity is indicative for epistasis. The type(s) of epistasis depend(s) on the actual non-linearity.

30
30

31
31 0 20 40 60 80 Genotypic trait value of offspring families 020406080100 Genotypic trait value of parents 2 =1.554 =1.247 2 =11.603 =3.406 2 =2.901 =1.703 = 3.406/2 h²=0.50 h²=0.37 ² G =11.603 ² A = 6.218 A = 2.494 ² D = 5.385 100 Gentoypic variance; 100 loci; a=d=0.5; p(A)=0.634 Genotypic variance; 100 loci; a=0.5; d=0; p(A)=0.634 Random mating Value of AA = 1 Value of aa = 0 WHY ?

32
32

33
33 COV 3.2 - 25- frequency (p) of the favourable allele when allowing for different degrees of dominance.

34
34

35
35

36
36 α 1 - α 2 = α =[a- (p-q)d] α i s sometimes called average effect of a gene substitution

38
38

39
39

40
40

41
41

42
42

43
43

44
44

45
45 t 0 1234 Syn generation (t) Expected performance ( t ) of a synthetic population in the first generations of multiplicaitons 4

Similar presentations

Presentation is loading. Please wait....

OK

& dding ubtracting ractions.

& dding ubtracting ractions.

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google