Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 4 Molecular Geometry and Bonding Theories ExamplesDr.Harbi.

Similar presentations


Presentation on theme: "Chapter 4 Molecular Geometry and Bonding Theories ExamplesDr.Harbi."— Presentation transcript:

1 Chapter 4 Molecular Geometry and Bonding Theories ExamplesDr.Harbi

2 Valence Shell Electron Pair Repulsion (VSEPR) Theory based on idea that regions of electron density in valence shell of central atom will be distributed in space such that electrostatic repulsions are minimizedbased on idea that regions of electron density in valence shell of central atom will be distributed in space such that electrostatic repulsions are minimized places regions of electron density as far apart as possibleplaces regions of electron density as far apart as possible produces molecular geometryproduces molecular geometry

3 Steps in Predicting Molecular Geometry draw Lewis structure of substancedraw Lewis structure of substance count regions of electron density on central atomcount regions of electron density on central atom draw electron pair shapedraw electron pair shape derive and draw molecular geometryderive and draw molecular geometry

4 Regions of Electron Density single covalent bondsingle covalent bond double covalent bonddouble covalent bond triple covalent bondtriple covalent bond lone pairlone pair unpaired electronunpaired electron

5 # Regions Shape 2linear 180°

6 Shape 2 3 linear trigonal planar 180° 120°

7 # Regions Shape 2 3 linear trigonal planar 4tetrahedral 180° 120° 109.5°

8 5 trigonal bypyramidal 90° 120°

9 5 6 octahedral 90° 90° 120°

10 Central Atoms Having Less than an Octet Relatively rare.Relatively rare. Molecules with less than an octet are typical for compounds of Groups 1A, 2A, and 3A.Molecules with less than an octet are typical for compounds of Groups 1A, 2A, and 3A. Most typical example is BF 3.Most typical example is BF 3. Formal charges indicate that the Lewis structure with an incomplete octet is more important than the ones with double bonds.Formal charges indicate that the Lewis structure with an incomplete octet is more important than the ones with double bonds. Exceptions to the Octet Rule

11

12 Summary of VSEPR Molecular Shapes e-pairsNotationName of VSEPR shapeExamples 2AX 2 LinearHgCl 2, ZnI 2, CS 2, CO 2 3AX 3 Trigonal planarBF 3, GaI 3 AX 2 ENon-linear (Bent)SO 2, SnCl 2 4AX 4 TetrahedralCCl 4, CH 4, BF 4 - AX 3 E(Trigonal) PyramidalNH 3, OH 3 - AX 2 E 2 Non-Linear (Bent)H 2 O, SeCl 2 5AX 5 Trigonal bipyramidalPCl 5, PF 5 AX 4 EDistorted tetrahedral (see-sawed) TeCl 4, SF 4 AX 3 E 2 T-ShapedClF 3, BrF 3 AX 2 E 3 LinearI 3 -, ICl 2 - 6AX 6 OctahedralSF 6, PF 6 - AX 5 ESquare PyramidalIF 5, BrF 5 AX 4 E 2 Square PlanarICl 4 -, BrF 4 -

13 Examples Determine the electron-pair (Domain) and molecular geometries of each of the following. Draw and name each.

14 Beryllium Chloride

15 BeCl 2

16 Beryllium Chloride BeCl 2 1. Lewis structure

17 Beryllium Chloride BeCl 2 1. Lewis structure             Cl Be Cl

18 Beryllium Chloride BeCl 2 1. Lewis structure             Cl Be Cl 2. Count regions of electron density on central atom central atom

19 Beryllium Chloride BeCl 2 1. Lewis structure             Cl Be Cl 2. Count regions of electron density on central atom central atom 2

20 Beryllium Chloride BeCl 2 1. Lewis structure             Cl Be Cl 2. Count regions of electron density on central atom central atom 2 3. Draw and name electron-pair shape             Cl Be Cl linear

21 Beryllium Chloride BeCl 2 3. Draw and name electron-pair shape             Cl Be Cl linear 3. Derive and name molecular shape             Cl Be Cl linear

22 Carbon Dioxide

23 CO 2

24 Carbon Dioxide CO 2         O C O

25 Carbon Dioxide CO 2         O C O 2 regions

26 Carbon Dioxide CO 2         O C O 2 regions Electron-pair shape, linear        O C O

27 Carbon Dioxide CO 2         O C O 2 regions Electron-pair shape, linear        O C O Molecular shape, linear       O C O

28 Aluminum Bromide

29 AlBr 3

30 Aluminum Bromide AlBr 3 Al Br Br Br                  

31 Aluminum Bromide AlBr 3 Al Br Br Br                   3 regions

32 Aluminum Bromide AlBr 3 Al Br Br Br                   3 regions Electron-pair shape trigonal planar Al Br Br Br                  

33 Aluminum Bromide AlBr 3 Al Br Br Br                   3 regions Electron-pair shape trigonal planar Al Br Br Br                   Molecular shape trigonal planar Al Br Br Br                  

34 Nitrite Ion

35 NO 2 –

36 Nitrite Ion NO 2 –       ONO       –

37 Nitrite Ion NO 2 –       ONO       – 3 regions

38 Nitrite Ion NO 2 –       ONO       – 3 regions Electron-pair shape trigonal planar N O O             –

39 Nitrite Ion NO 2 –       ONO       – 3 regions Electron-pair shape trigonal planar N O O             –

40 Nitrite Ion NO 2 –       ONO       – 3 regions Electron-pair shape trigonal planar N O O             – Molecular shape bent bent N O O             –

41 Carbon Tetrabromide

42 CBr 4

43 Carbon Tetrabromide CBr 4 C Br Br Br                   Br      

44 Carbon Tetrabromide CBr 4 C Br Br Br                   Br       4 regions

45 Carbon Tetrabromide CBr 4 C Br Br Br                   Br       4 regions Electron-pair shape tetrahedral C Br Br Br                   Br      

46 Carbon Tetrabromide CBr 4 C Br Br Br                   Br       4 regions Electron-pair shape tetrahedral C Br Br Br                   Br       Molecular shape tetrahedral

47 Arsine

48 Arsine AsH 3

49 Arsine As H H H  

50 Arsine As H H H   4 regions electron-pair shape, tetrahedral

51 Arsine AsH 3 As H H H   4 regions electron-pair shape, tetrahedral As   H H H

52 Arsine AsH 3 As H H H   4 regions electron-pair shape, tetrahedral As   H H H molecular shape trigonal pyramid or tripod

53 Arsine AsH 3 As H H H   4 regions electron-pair shape, tetrahedral As   H H H molecular shape trigonal pyramid or tripod As H H H

54 Water H2OH2OH2OH2O

55 Water H2OH2OH2OH2O O   HH  

56 Water H2OH2OH2OH2O O   HH   4 regions electron-pair shape tetrahedral

57 Water H2OH2OH2OH2O O   HH   4 regions electron-pair shape tetrahedral O   HH  

58 Water H2OH2OH2OH2O O   HH   4 regions electron-pair shape tetrahedral O   HH   molecular shape bent

59 Water H2OH2OH2OH2O O   HH   4 regions electron-pair shape tetrahedral O   HH   molecular shape bent O HH

60 Phosphorus Pentafluoride

61 PF 5                 P F F F F F              

62 Phosphorus Pentafluoride PF 5                 P F F F F F               5 regions electron-pair shape trigonal bipyramidal                 F F F F F               P

63 Phosphorus Pentafluoride PF 5                 P F F F F F               5 regions electron-pair shape trigonal bipyramidal                 F F F F F               P molecular shape trigonal bipyramidal

64 Sulfur Tetrafluoride

65 SF 4

66 Sulfur Tetrafluoride SF 4           S F F F F                

67 Sulfur Tetrafluoride SF 4           S F F F F                 5 regions trigonal bipyramidal

68 Sulfur Tetrafluoride SF 4           S F F F F                 5 regions trigonal bipyramidal                 F F F F           S

69 Sulfur Tetrafluoride SF 4           S F F F F                 5 regions trigonal bipyramidal                 F F F F           S                 F F F F         S molecular shape distorted tetrahedral

70 Sulfur Tetrafluoride SF 4           S F F F F                 5 regions trigonal bipyramidal                 F F F F           S molecular shape see saw S F F F F

71 Chlorine Trifluoride

72 ClF 3

73 Chlorine Trifluoride ClF 3           F F F             Cl

74 Chlorine Trifluoride ClF 3           F F F             Cl 5 regions electron-pair shape trigonal bipyramidal

75 Chlorine Trifluoride ClF 3           F F F             Cl 5 regions electron-pair shape trigonal bipyramidal Cl   F F F                    

76 Chlorine Trifluoride ClF 3           F F F             Cl 5 regions electron-pair shape trigonal bipyramidal Cl   F F F                    

77 Chlorine Trifluoride ClF 3           F F F             Cl 5 regions electron-pair shape trigonal bipyramidal Cl   F F F                     molecular shape T-shape Cl   F F F                

78 Sulfur Hexafluoride

79 SF 6

80 Sulfur Hexafluoride SF 6 S F F F F F F                                    

81 Sulfur Hexafluoride SF 6 S F F F F F F                                     6 regions electron-pair shape octahedral S F F F F F F                                    

82 Sulfur Hexafluoride SF 6 S F F F F F F                                     6 regions electron-pair shape octahedral S F F F F F F                                     molecular shape octahedral

83 Bromine Pentafluoride

84 BrF 5

85 Bromine Pentafluoride BrF 5 Br F F F F F                                

86 Bromine Pentafluoride BrF 5 Br F F F F F                               6 regions electron-pair shape octahedral  

87 Bromine Pentafluoride BrF 5 Br F F F F F                               6 regions electron-pair shape octahedral Br F F F F F                                  

88 Bromine Pentafluoride BrF 5 Br F F F F F                               6 regions electron-pair shape octahedral Br F F F F F                                  

89 Bromine Pentafluoride BrF 5 Br F F F F F                               6 regions electron-pair shape octahedral Br F F F F F                                 molecular shape square pyramidal Br F F F F F                              

90 Xenon Tetrafluoride

91 XeF 4

92 Xenon Tetrafluoride XeF 4 Xe F F F F                            

93 Xenon Tetrafluoride XeF 4 Xe F F F F                             6 regions electron-pair shape octahedral

94 Xenon Tetrafluoride XeF 4 Xe F F F F                             6 regions electron-pair shape octahedral Xe F F F F                            

95 Xenon Tetrafluoride XeF 4 Xe F F F F                             6 regions electron-pair shape octahedral Xe F F F F                           

96 Xenon Tetrafluoride XeF 4 Xe F F F F                             6 regions electron-pair shape octahedral Xe F F F F                            Xe F F F F                         molecular shape square planar

97 Tribromide Ion Br 3 – Br 3 –

98 Tribromide Ion Br 3 – Br 3 – Br                   Br Br

99 Tribromide Ion Br 3 – Br 3 – Br                   Br Br 5 regions electron-pair shape trigonal bipyramidal

100 Tribromide Ion Br 3 – Br 3 – Br                   Br Br 5 regions electron-pair shape trigonal bipyramidal              Br Br      Br

101 Tribromide Ion Br 3 – Br 3 – Br                   Br Br 5 regions electron-pair shape trigonal bipyramidal              Br Br      Br

102 Tribromide Ion Br 3 – Br 3 – Br                   Br Br 5 regions electron-pair shape trigonal bipyramidal              Br Br      Br molecular shape linear             Br Br Br

103 Polarity of Molecules molecules in which dipole moments of the bonds do not cancel are polar moleculesmolecules in which dipole moments of the bonds do not cancel are polar molecules molecules that do not contain polar bonds or in which all dipole moments cancel are non-polar moleculesmolecules that do not contain polar bonds or in which all dipole moments cancel are non-polar molecules

104 CO 2 vs H 2 O C O O O H H

105 C O O O H H  +  –  +  –

106 CO 2 vs H 2 O C O O O H H  +  –  +  –

107 CO 2 vs H 2 O C O O O H H  +  –  +  – 0

108 CO 2 vs H 2 O C O O O H H  +  –  +  – 0

109 CO 2 vs H 2 O C O O O H H  +  –  +  – 0yx yx

110 CO 2 vs H 2 O C O O O H H  +  –  +  – yx y x

111 CO 2 vs H 2 O C O O O H H  +  –  +  – nonpolar polar

112 Study and Know 9.2 Polarity of Molecules

113 VSEPR Theory only explains molecular shapes says nothing about bonding in molecules Enter Valence Bond (VB) Theory atoms share electron pairs by allowing their atomic orbitals to overlap

114 + H H

115 + H H  bond

116 + H H 1s E H

117 + H H 1s E H H

118 + F F F2F2F2F2

119 + F F F2F2F2F2

120 1s 2s 2p E F

121 1s 2s 2p F E F

122 Methane CH 4 1s 2s 2p E C

123 Methane 1s 2s 2p E C H H

124 Methane 1s 2s 2p E C H H H+H+H+H+

125 Methane 1s 2s 2p E C H H H+H+H+H+ H–H–H–H–

126 Methane 1s 2s 2p E C H H H+H+H+H+ H–H–H–H– C H H H H 90° 90°

127 Methane C H H H H 109.5° Tetrahedral Geometry 4 Identical Bonds 4 Identical Bonds

128 Problem and Solution C must have 4 identical orbitals in valence shell for bonding solution: hybridization

129 Methane CH 4 1s 2s 2p E

130 Methane 1s 2s 2p E 1s 2s 2p E

131 Methane 1s 2s 2p E 1s 2s 2p E

132 Methane 1s 2s 2p E 1s 2s 2p E

133 Methane 1s 2s 2p E 1s E sp 3

134 – + + + 2p 2s

135 – + + + = 2p 2s an sp 3 hybrid orbital

136 4 identical sp 3 hybrid orbitals

137 tetrahedral geometry

138 4 identical sp 3 hybrid orbitals tetrahedral geometry

139 4 identical sp 3 hybrid orbitals tetrahedral geometry

140 Methane CH 4 1s 2s 2p E 1s E sp 3 H H H H

141 Hybridization vs Shape (e – pair) sp linearsp linear sp 2 trigonal planarsp 2 trigonal planar sp 3 tetrahedralsp 3 tetrahedral sp 3 d trigonal bipyramidalsp 3 d trigonal bipyramidal sp 3 d 2 octahedralsp 3 d 2 octahedral

142 Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion

143 Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion Br 3 –

144 Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion Br 3 – Br                   Br Br 5 regions electron-pair shape trigonal bypyramidal

145 Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion Br 3 – Br                   Br Br 5 regions electron-pair shape trigonal bypyramidal sp 3 d

146 Predict the Hybridization of the Central Atom in carbon dioxide in carbon dioxide CO 2

147 Predict the Hybridization of the Central Atom in carbon dioxide in carbon dioxide CO 2         O C O 2 regions Electron-pair shape, linear

148 Predict the Hybridization of the Central Atom in carbon dioxide in carbon dioxide CO 2         O C O 2 regions Electron-pair shape, linear sp

149 Predict the Hybridization of the Central Atom in aluminum bromide in aluminum bromide

150 Predict the Hybridization of the Central Atom in aluminum bromide in aluminum bromide Al Br Br Br                 3 regions Electron-pair shape trigonal planar  

151 Predict the Hybridization of the Central Atom in aluminum bromide in aluminum bromide Al Br Br Br                 3 regions Electron-pair shape trigonal planar   sp 2

152 Predict the Hybridization of the Central Atom in xenon tetrafluoride in xenon tetrafluoride

153 Predict the Hybridization of the Central Atom in xenon tetrafluoride in xenon tetrafluoride Xe F F F F                             6 regions electron-pair shape octahedral

154 Predict the Hybridization of the Central Atom in xenon tetrafluoride in xenon tetrafluoride Xe F F F F                             6 regions electron-pair shape octahedral sp 3 d 2

155 Consider Ethylene, C 2 H 4

156 C C H H H H

157 C C H H H H 3 regions trigonal planar

158 Consider Ethylene, C 2 H 4 C C H H H H 3 regions trigonal planar sp 2

159 Consider Ethylene, C 2 H 4 C C H H H H 3 regions trigonal planar sp 2

160 1s 2s 2p E

161 1s 2s 2p E 1s 2s 2p E

162 1s 2s 2p E 1s 2p E

163 2p

164 2p

165

166

167  bond framework

168

169

170  bond

171

172 Consider Acetylene, C 2 H 2 C C H H

173 C C H H 2 regions linear

174 Consider Acetylene, C 2 H 2 C C H H 2 regions linear sp

175 Consider Acetylene, C 2 H 2 C C H H 2 regions linear sp

176 1s 2s 2p E 1s 2s 2p E

177 1s 2s 2p E 1s sp 2p E

178 sp sp 2p 2p

179

180  bond framework

181

182  bonds

183

184 Generally single bond is a  bondsingle bond is a  bond double bond consists of 1  and 1  bonddouble bond consists of 1  and 1  bond triple bond consists of 1  and 2  bondstriple bond consists of 1  and 2  bonds

185 Molecular Orbital (MO) Theory when atoms combine to form molecules, atomic orbitals overlap and are then combined to form molecular orbitals orbitals are conserved a molecular orbital is an orbital associated with more than 1 nucleus like any other orbital, an MO can hold 2 electrons consider hydrogen atoms bonding to form H 2

186 + H H

187 add subtract

188 add subtract bonding antibonding

189 add subtract bonding antibonding  * 1s  1s

190 1s 1s  * 1s H H H2H2H2H2 E E

191 1s 1s  1s  * 1s H H H2H2H2H2 E E

192 1s 1s  1s  * 1s H H H2H2H2H2 E E

193 1s 1s  1s  * 1s H H H2H2H2H2 E E

194 1s 1s  1s  * 1s H H H2H2H2H2 E E (  1s ) 2

195 1s 1s  1s  * 1s H H H2H2H2H2 E E (  1s ) 2 total spin = 0

196 Diamagnetic: slightly repelled by a magnetic fieldDiamagnetic: slightly repelled by a magnetic field total spin = 0 paramagnetic: attracted to a magnetic fielsparamagnetic: attracted to a magnetic fiels total spin not 0 Bond Order = 1/2 (bonding e – – antibonding e – )Bond Order = 1/2 (bonding e – – antibonding e – )

197 1s 1s  1s  * 1s H H H2H2H2H2 E E (  1s ) 2 total spin = 0 diamagnetic

198 1s 1s  1s  * 1s H H H2H2H2H2 E E BO = 1/2 ( 2 – 0) = 1

199 Consider He 2

200 1s 1s  1s  * 1s He He He 2 E E

201 1s 1s  1s  * 1s He He He 2 E E

202 1s 1s  1s  * 1s He He He 2 E E (  1s ) 2 (  * 1s ) 2

203 1s 1s  1s  * 1s He He He 2 E E diamagnetic

204 1s 1s  1s  * 1s He He He 2 E E BO = 1/2 ( 2 – 2 ) = 0

205 Combination of p Atomic Orbitals

206 2p 2p

207 subtract add

208 bonding MO antibonding MO subtract add

209 bonding MO antibonding MO  * 2p  2p subtract add

210 2p 2p

211 subtract add

212 antibonding MO bonding MO subtract add

213  2p  * 2p subtract add

214  2p  * 2p subtract add

215 Consider Li 2

216 2s 2s  2s  * 2s Li Li Li 2 E E 2p  2p  * 2p 2p  2p  * 2p

217 2s 2s  2s  * 2s Li Li Li 2 E E 2p  2p  * 2p 2p  2p  * 2p

218 2s 2s  2s  * 2s Be Be Be 2 E E 2p  2p  * 2p 2p  2p  * 2p

219 2s 2s  2s  * 2s Be Be Be 2 E E 2p  2p  * 2p 2p  2p  * 2p

220 2s 2s  2s  * 2s B B B2B2B2B2 E E 2p  2p  * 2p 2p  2p  * 2p

221 2s 2s  2s  * 2s B B B2B2B2B2 E E 2p  2p  * 2p 2p  2p  * 2p

222 2s 2s  2s  * 2s C C C2C2C2C2 E E 2p  2p  * 2p 2p  2p  * 2p

223 2s 2s  2s  * 2s N N N2N2N2N2 E E 2p  2p  * 2p 2p  2p  * 2p

224 2s 2s  2s  * 2s O O O2O2O2O2 E E 2p  2p  * 2p 2p  2p  * 2p

225 2s 2s  2s  * 2s F F F2F2F2F2 E E 2p  2p  * 2p 2p  2p  * 2p

226 2s 2s  2s  * 2s Ne Ne Ne 2 E E 2p  2p  * 2p 2p  2p  * 2p


Download ppt "Chapter 4 Molecular Geometry and Bonding Theories ExamplesDr.Harbi."

Similar presentations


Ads by Google