Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 8 Covalent Bonding.

Similar presentations


Presentation on theme: "Chapter 8 Covalent Bonding."— Presentation transcript:

1 Chapter 8 Covalent Bonding

2 National Standards for Chapter 8
UCP.2 Evidence, models, and explanation UCP.3 Change, constancy, and measurement UCP.5 Form and function A.1 Abilities necessary to do scientific inquiry A.2 Understandings about scientific inquiry B.1 Structure of atoms B.2 Structure ad properties of matter B.3 Chemical reactions B.4 Motions and forces B.6 Interactions of energy and matter E.2 Understandings about science and technology G.2 Nature of scientific knowledge G.3 Historical perspectives

3 Vocabulary/Study Guide
Define each term using the Glossary Either write on the handout, or use your own paper This is due on Test Day (tentatively, Tuesday, February 4)

4 Section 1: The Covalent Bond
National Standards: UCP.2 Evidence, models, and explanation UCP.3 Change, constancy, and measurement UCP.5 Form and function A.1 Abilities necessary to do scientific inquiry B.1 Structure of atoms B.2 Structure ad properties of matter B.3 Chemical reactions B.4 Motions and forces B.6 Interactions of energy and matter

5 Objectives – Section 1 Apply the octet rule to atoms that form covalent bonds. Describe the formation of single, double, and triple covalent bonds. Contrast sigma and pi bonds. Relate the strength of a covalent bond to its bond length and bond dissociation energy. REVIEW VOCABULARY: chemical bond: the force that holds two atoms together

6 New Vocabulary covalent bond pi bond molecule endothermic reaction Lewis structure exothermic reaction sigma bond Atoms gain stability when they share electrons and form covalent bonds.

7 Launch Lab OBJECTIVE: Students will compare the properties of organosilicon oxide (Si(OCH2CH3)2O) to the properties of ionic compounds, which they studied previously. PREDICTIONS: What type of compound is used to make a super ball? If you vary the amount of ethanol used in making the ball, how will this effect the outcome? DATA:

8 Why Do Atoms Bond? Noble gases have stable electron arrangements.
This stable arrangement consists of a full outer energy level and has lower potential energy than other electron arrangements. Metals and nonmetals gain stability by transferring electrons (gaining or losing) to form ions that have stable noble-gas electron configurations. The octet rule states that atoms with a complete octet, a configuration of eight valence electrons, are stable

9 Why Do Atoms Bond? Another way atoms can gain stability is by sharing valence electrons with other atoms, which also results in noble-gas electron configurations. The stability of an atom, ion, or compound is related to its energy. That is, lower energy states are more stable.

10 What is a Covalent Bond? Atoms in non-ionic compounds share electrons.
The chemical bond that results from sharing electrons is a covalent bond. A molecule is formed when two or more atoms bond covalently. The majority of covalent bonds form between atoms of nonmetallic elements which are near each other on the periodic table.

11 What is a Covalent Bond? Diatomic molecules (H2, N2, F2, O2, I2, Cl2, Br2) exist because the two-atom molecules are more stable than the individual atoms.

12 What is a Covalent Bond? The most stable arrangement of atoms exists at the point of maximum net attraction, where the atoms bond covalently and form a molecule.

13 Lab: Compare Melting Points, pg. 242
OBJECTIVE: To observe how the properties of a compound depend on whether the bonds in the compound are ionic or covalent. PREDICTIONS: How can you determine the relationship between bond type and melting point? Predict the order in which salt, sugar, and paraffin will melt. DATA:

14 Single Covalent Bonds When only one pair of electrons is shared, the result is a single covalent bond. The figure shows two hydrogen atoms forming a hydrogen molecule with a single covalent bond, resulting in an electron configuration like helium.

15 Single Covalent Bonds Electron-dot diagrams can be used to show valence electrons of atoms In a Lewis structure electron-dot diagrams and a line are used to symbolize the valence electrons and a single covalent bond. The halogens—the group 17 elements—have 7 valence electrons and form single covalent bonds with atoms of other non-metals.

16 Single Covalent Bonds The halogens—the group 17 elements—have 7 valence electrons and form single covalent bonds with atoms of other non-metals.

17 Single Covalent Bonds Atoms in group 16 can share two electrons and form two covalent bonds. Water is formed from one oxygen with two hydrogen atoms covalently bonded to it .

18 Single Covalent Bonds Atoms in group 15 form three single covalent bonds, such as in ammonia.

19 Single Covalent Bonds Atoms of group 14 elements form four single covalent bonds, such as in methane.

20 Single Covalent Bonds Practice Problems #1-6, page 244
Write the problem, then the answer

21 Single Covalent Bonds Sigma bonds are single covalent bonds represented by the Greek letter sigma (σ). Sigma bonds occur when the pair of shared electrons is in an area centered between the two atoms.

22 Multiple Covalent Bonds
Double bonds form when two pairs of electrons are shared between two atoms. Triple bonds form when three pairs of electrons are shared between two atoms.

23 Multiple Covalent Bonds
A multiple covalent bond consists of one sigma bond and at least one pi bond. The pi bond (Ï€)is formed when parallel orbitals overlap and share electrons. The pi bond occupies the space above and below the line that represents where the two atoms are joined together.

24 The Strength of Covalent Bonds
The strength depends on the distance between the two nuclei, or bond length. As length increases, strength decreases.

25 The Strength of Covalent Bonds
The amount of energy required to break a bond is called the bond dissociation energy. The shorter the bond length, the greater the energy required to break it.

26 The Strength of Covalent Bonds
An endothermic reaction is one where a greater amount of energy is required to break a bond in reactants than is released when the new bonds form in the products. An exothermic reaction is one where more energy is released than is required to break the bonds in the initial reactants.

27 Homework, Section 1 SECTION 1 REVIEW, Page 247 Questions #7,8,9,12,13
Answer with complete sentences Due tomorrow Also due: Worksheet 8.1 And Practice Problems, #1-6, page 244

28 Section 2: Naming Molecules
National Standards: UCP.2 Evidence, models, and explanation UCP.3 Change, constancy, and measurement UCP.5 Form and function B.2 Structure and properties of matter G.2 Nature of scientific knowledge

29 Objectives – Section 2 Review Vocabulary:
Translate molecular formulas into binary molecular compound names. Name acidic solutions. Review Vocabulary: oxyanion: a polyatomic ion in which an element (usually a nonmetal) is bonded to one or more oxygen atoms

30 New Vocabulary oxyacid Specific rules are used when naming binary molecular compounds, binary acids, and oxyacids.

31 Naming Binary Molecular Compounds
Ex. N2O The first element is always named first using the entire element name, N is the symbol for nitrogen. The second element is named using its root and adding the suffix -ide, O is the symbol for oxygen so the second word is oxide. Prefixes are used to indicate the number of atoms of each element that are present in the compound, There are two atoms of nitrogen and one atom of oxygen so the first word is dinitrogen and the second word is monoixide.

32 Naming Binary Molecular Compounds
Prefixes are used to indicate the number of atoms of each element in a compound.

33 Naming Binary Molecular Compounds
Many compounds were discovered and given common names long before the present naming system was developed (water, ammonia, hydrazine, nitric oxide).

34 Naming Binary Molecular Compounds
Practice Problems #14-18, page 249

35 Math Skills Transparency 9

36 Naming Acids Binary Acids (An acid that contains hydrogen and one other element) – Ex. HCl The first word has the prefix hydro- to name the hydrogen part of the compound. The rest of the word consists of a form of the root of the second element plus the suffix–ic, HCl (hydrogen and chlorine) becomes hydrochloric. The second word is always acid, Thus, HCl in a water solution is called hydrochloric acid.

37 Naming Acids An oxyacid is an acid that contains both a hydrogen atom and an oxyanion. Ex. HNO3 Identify the oxyanion present. The first word of an oxyacid’s name consists of the root of the oxyanion and the prefix per- or hypo- if it is part of the name and a suffix. If the oxyanion’s name ends with the suffix –ate, replace it with the suffix –ic. If the name of the oxyanion ends with suffix –ite, replace it with suffix –ous, NO3 the nitrate ion, becomes nitric. The second word of the name is always acid, HNO3 (hydrogen and nitrogen ion) becomes nitric acid.

38 Naming Acids

39 Naming Acids An acid, whether a binary acid or an oxyacid, can have a common name in addition to its compound name.

40 Naming Acids Practice Problems #19-24, page 251

41 Naming Acids The name of a molecular compound reveals its composition and is important in communicating the nature of the compound.

42 Naming Acids Practice Problems #25-30, page 251

43 Naming Acids

44 Homework, Section 2 SECTION 2 REVIEW, Page 252 Questions #31-36
Answer with complete sentences Due tomorrow

45 Section 3: Molecular Structures
National Standards: UCP.2 Evidence, models, and explanation UCP.3 Change, constancy, and measurement UCP.5 Form and function B.2 Structure and properties of matter

46 Objectives – Section 3 Review Vocabulary:
List the basic steps used to draw Lewis structures. Explain why resonance occurs, and identify resonance structures. Identify three exceptions to the octet rule, and name molecules in which these exceptions occur. Review Vocabulary: ionic bond: the electrostatic force that holds oppositely charged particles together in an ionic compound

47 New Vocabulary structural formula resonance coordinate covalent bond Structural formulas show the relative positions of atoms within a molecule.

48 Structural Formulas A structural formula uses letter symbols and bonds to show relative positions of atoms.

49 Structural Formulas Drawing Lewis Structures
Predict the location of certain atoms, the atom that has the least attraction for shared electrons will be the central atom in the molecule (usually, the one closer to the left side of the periodic table). All other atoms become terminal atoms. Note: Hydrogen is always a terminal atom. Determine the number of electrons available for bonding, the number of valence electrons. Determine the number of bonding pairs, divide the number of electrons available for bonding by two.

50 Structural Formulas Place the bonding pairs, place a single bond between the central atoms and each of the terminal atoms. Determine the number of bonding pairs remaining, Subtract the number of bonding pairs in step 4 from the number of bonding pairs in step 3. Place lone pairs around terminal atoms, except hydrogen, to satisfy the octet rule. Any remaining pairs will be assigned to the central atom. Determine whether the central atom satisfies the octet rule, If not, convert one or two of the lone pairs on the terminal atoms into a double bond or a triple bond between the terminal atom and the central atom. Remember: carbon, nitrogen, oxygen and sulfur often form double and triple bonds.

51 Structural Formulas Practice Problems #37-40, page

52 Structural Formulas Atoms within a polyatomic ion are covalently bonded. The procedure for drawing Lewis structures is similar to drawing them for covalent compounds. Difference is, you need to determine the number of electrons available for bonding, find the number of electrons available in the atoms present and then subtract the ion charge if the ion is positive or add the ion charge if the ion is negative.

53 Structural Formulas Practice Problems #41-42, page 257

54 Transparency 26: Lewis Structures

55 Resonance Structures Resonance is a condition that occurs when more than one valid Lewis structure can be written for a molecule or ion. This figure shows three correct ways to draw the structure for (NO3)-1.

56 Resonance Structures Two or more correct Lewis structures that represent a single ion or molecule are resonance structures. The molecule behaves as though it has only one structure. The bond lengths are identical to each other and intermediate between single and double covalent bonds.

57 Resonance Structures Practice Problems #43-46, page 258

58 Exception to the Octet Rule
Some molecules do not obey the octet rule. A small group of molecules might have an odd number of valence electrons. NO2 has five valence electrons from nitrogen and 12 from oxygen and cannot form an exact number of electron pairs.

59 Exception to the Octet Rule
A few compounds form stable configurations with less than 8 electrons around the atom—a suboctet. A coordinate covalent bond forms when one atom donates both of the electrons to be shared with an atom or ion that needs two electrons.

60 Exception to the Octet Rule
A third group of compounds has central atoms with more than eight valence electrons, called an expanded octet. Elements in period 3 or higher have a d-orbital and can form more than four covalent bonds.

61 Exception to the Octet Rule
Practice Problems #47-49, page 260

62 Homework, Section 3 SECTION 3 REVIEW, Page 260 Questions #50-55
Answer with complete sentences Due tomorrow

63 Section 4: Molecular Shapes
National Standards: UCP.2 Evidence, models, and explanation UCP.3 Change, constancy, and measurement UCP.5 Form and function A.1 Abilities necessary to do scientific inquiry B.2 Structure and properties of matter B.4 Motions and forces

64 Objectives – Section 4 Review Vocabulary:
Summarize the VSEPR bonding theory. Predict the shape of, and the bond angles in, a molecule. Define hybridization. Review Vocabulary: atomic orbital: the region around an atom’s nucleus that defines an electron’s probable location

65 New Vocabulary VSEPR model hybridization The VSEPR model is used to determine molecular shape.

66 VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion model, or VSEPR model which minimizes the repulsion of shared and unshared atoms around the central atom.

67 VSEPR Model Electron pairs repel each other and cause molecules to be in fixed positions relative to each other. Unshared electron pairs also determine the shape of a molecule. Electron pairs are located in a molecule as far apart as they can be.

68 Transparency 27: VSEPR Model and Molecular Shape

69 Hybridization Hybridization is a process in which atomic orbitals mix and form new, identical hybrid orbitals. Carbon often undergoes hybridization, which forms an sp3 orbital formed from one s orbital and three p orbitals. Lone pairs also occupy hybrid orbitals.

70 Hybridization Single, double, and triple bonds occupy only one hybrid orbital (CO2 with two double bonds forms an sp hybrid orbital).

71 Hybridization

72 Hybridization

73 Hybridization

74 Hybridization Practice Problems #56-60, page 264

75 Lab: Covalent Bonding in Medicines

76 Homework, Section 4 SECTION 4 REVIEW, Page 264 Questions #61-67
Answer with complete sentences Due tomorrow

77 Section 5: Electronegativity and Polarity
National Standards: UCP.2 Evidence, models, and explanation UCP.3 Change, constancy, and measurement UCP.5 Form and function A.1 Abilities necessary to do scientific inquiry A.2 Understandings about scientific inquiry B.1 Structure of atoms B.2 Structure ad properties of matter B.4 Motions and forces B.6 Interactions of energy and matter E.2 Understandings about science and technology G.3 Historical perspectives

78 Objectives – Section 5 Review Vocabulary:
Describe how electronegativity is used to determine bond type. Compare and contrast polar and nonpolar covalent bonds and polar and nonpolar molecules. Generalize about the characteristics of covalently bonded compounds. Review Vocabulary: electronegativity: the relative ability of an atom to attract electrons in a chemical bond

79 New Vocabulary polar covalent bond A chemical bond’s character is related to each atom’s attraction for the electrons in the bond.

80 Electronegativity and Bond Character
Electron affinity measures the tendency of an atom to accept an electron. Noble gases are not listed because they generally do not form compounds.

81 Electronegativity and Bond Character
This table lists the character and type of chemical bond that forms with differences in electronegativity.

82 Electronegativity and Bond Character
Unequal sharing of electrons results in a polar covalent bond. Bonding is often not clearly ionic or covalent.

83 Electronegativity and Bond Character
This graph summarizes the range of chemical bonds between two atoms.

84 Transparency 28: Electronegativity and Polarity

85 Math Skills Transparency 10

86 Polar Covalent Bonds Polar covalent bonds form when atoms pull on electrons in a molecule unequally. Electrons spend more time around one atom than another resulting in partial charges at the ends of the bond called a dipole.

87 Polar Covalent Bonds Covalently bonded molecules are either polar or non-polar. Non-polar molecules are not attracted by an electric field. Polar molecules align with an electric field.

88 Polar Covalent Bonds Compare water, H2O, and CCl4.
Both bonds are polar. The molecular shapes, determined by VSEPR, is bent and tetrahedral, respectively. O – H bonds are asymmetric in water, so has a definite postive end and definite negative end. Thus, polar. The C – Cl bonds are symmetrical in CCl4. The electric charge measured at any distance from the center is identical on all sides and partial charges are balanced. Thus nonpolar.

89 Polar Covalent Bonds Note: If bonds are polar, asymmetrical molecules are polar and symmetrical molecules are nonpolar.

90 Polar Covalent Bonds Solubility is the property of a substance’s ability to dissolve in another substance. Polar molecules and ionic substances are usually soluble in polar substances. Non-polar molecules dissolve only in non-polar substances.

91 Properties of Covalent Compounds
Covalent bonds between atoms are strong, but attraction forces between molecules are weak. The weak attraction forces are known as van der Waals forces. The forces vary in strength but are weaker than the bonds in a molecule or ions in an ionic compound.

92 Properties of Covalent Compounds
Non-polar molecules exhibit a weak dispersion force, or induced dipole. The force between two oppositely charged ends of two polar molecules is a dipole-dipole force. A hydrogen bond is an especially strong dipole-dipole force between a hydrogen end of one dipole and a fluorine, oxygen, or nitrogen atom on another dipole.

93 Lab: Model Molecular Shapes, pg. 272

94 Data Analysis Lab (page 268)

95 Lab: Covalent Compounds

96 Properties of Covalent Compounds
Many physical properties are due to intermolecular forces. Weak forces result in the relatively low melting and boiling points of molecular substances. Many covalent molecules are relatively soft solids. Molecules can align in a crystal lattice, similar to ionic solids but with less attraction between particles.

97 Covalent Network Solids
Solids composed of only atoms interconnected by a network of covalent bonds are called covalent network solids. Quartz and diamonds are two common examples of network solids.

98 Homework, Section 5 SECTION 3 REVIEW, Page 270 Questions #68-77
Answer with complete sentences Due tomorrow

99 Key Concepts Covalent bonds form when atoms share one or more pairs of electrons. Sharing one pair, two pairs, and three pairs of electrons forms single, double, and triple covalent bonds, respectively. Orbitals overlap directly in sigma bonds. Parallel orbitals overlap in pi bonds. A single covalent bond is a sigma bond but multiple covalent bonds are made of both sigma and pi bonds. Bond length is measured nucleus-to-nucleus. Bond dissociation energy is needed to break a covalent bond.

100 Key Concepts Names of covalent molecular compounds include prefixes for the number of each atom present. The final letter of the prefix is dropped if the element name begins with a vowel. Molecules that produce H+ in solution are acids. Binary acids contain hydrogen and one other element. Oxyacids contain hydrogen and an oxyanion.

101 Key Concepts Different models can be used to represent molecules.
Resonance occurs when more than one valid Lewis structure exists for the same molecule. Exceptions to the octet rule occur in some molecules.

102 Key Concepts VSEPR model theory states that electron pairs repel each other and determine both the shape of and bond angles in a molecule. Hybridization explains the observed shapes of molecules by the presence of equivalent hybrid orbitals.

103 Key Concepts The electronegativity difference determines the character of a bond between atoms. Polar bonds occur when electrons are not shared equally forming a dipole. The spatial arrangement of polar bonds in a molecule determines the overall polarity of a molecule. Molecules attract each other by weak intermolecular forces. In a covalent network solid, each atom is covalently bonded to many other atoms.


Download ppt "Chapter 8 Covalent Bonding."

Similar presentations


Ads by Google