Presentation is loading. Please wait.

Presentation is loading. Please wait.

Using Text Mining to Infer Semantic Attributes for Retail Data Mining Authors: Rayid Ghani & Andrew E. Fano Presenter: Vishal Mahajan INFS795.

Similar presentations


Presentation on theme: "Using Text Mining to Infer Semantic Attributes for Retail Data Mining Authors: Rayid Ghani & Andrew E. Fano Presenter: Vishal Mahajan INFS795."— Presentation transcript:

1 Using Text Mining to Infer Semantic Attributes for Retail Data Mining Authors: Rayid Ghani & Andrew E. Fano Presenter: Vishal Mahajan INFS795

2 Agenda Drawbacks in Current Data Mining Techniques. Purpose. Assumptions and Constraints. Methodology or Approach. Extraction of Feature Set. Labeling. Classification Techniques. Naïve Bayes EM Experimental Results. Recommender System.

3 Drawbacks in Current Data Mining Techniques Semantic Features not automatically considered. Transactional Data analyzed without analyzing the customer. Trending is partial. Retail Items treated as objects with no associated semantics. Data Mining Techniques (association rules, decision trees, neural networks) ignore the meaning of items and semantics associated with them.

4 Purpose of the Presentation Describe a system that extracts semantic features. Populate the knowledge base with the semantic features. Use of text mining in retailing to extract semantic features from website of retailers. How profiles of customers or group of customers can be build using Text Mining.

5 Assumptions & Constraints Focus on Apparel Retail segment only. Results focus on extracting those semantic features that are deemed important by CRM or Retail experts. Data extracted from retailers website. Models generated can be extended beyond the Apparel Retail segment.

6 Approach Collect Information about products. Define set of features to be extracted. Label the data with values of the features. Train a classifier/extractor to use the labeled training to extract features from unseen data. Extract Semantic Features from new products by using trained classifier. Populate a knowledge base with the products and corresponding feature.

7 Data Collection Methodology Use of web crawler to extract the following from large retailers’ website: Names URLs Description Prices Categories of all Products Available Use of wrappers. Extracted Information stored in a database and a subset chosen.

8 Extraction of Feature Set Feature selection based on Expert Systems. Use of extensive domain knowledge. Feature selection based on Retail Apparel section in mind. Feature Selected for the project  Age Group Functionality Price Formality Degree of Conservativeness Degree of Sportiness Degree of Trendiness Degree of Brand Appeal

9 Labeling Training Data Database created with data from collected from retailer website. Subset of 600 products chosen and labeled. Labeling guidelines provided

10 Details of Features extracted from each Product Description Age Group Age Group Juniors, Teens, GenX, Mature, All ages For what ages is this item most appropriate? Functionality Loungewear, Sportswear, Eveningwear, Business Casual, Business Formal How will the item be used? Pricepoint Discount, Average, LuxuryCompared to other items of this kind is this item cheap or expensive? Formality Informal, Somewhat Formal, Very FormalHow formal is this item? Conservation 1 (gray suits) to 5 (Loud, flashy clothes)Does this suggest the person is conservative or flashy? Sportiness 1 to 5 Trendiness 1 (Timeless Classic) to 5 (Current favorite)Is this item popular now but likely to go out of style? Or is it more timeless? Brand Appeal 1 (Brand makes the product unappealing) to 5 (high brand appeal) Is the brand known and makes it appealing

11 Verifying Training Data Disjoint Dataset as labeling done by different individuals. Association rules (between features) used to obtain consistency in labeled data. Apriori algorithm Apriori Algorithm implemented with single and two feature antecedents and consequents. Desired Consistency in Labeling achieved by applying associating rules

12 Apriori Algorithm Find the frequent itemsets: the sets of items that have minimum support A subset of a frequent itemset must also be a frequent itemset i.e., if {AB} is a frequent itemset, both {A} and {B} should be a frequent itemset Use the frequent itemsets to generate association rules.

13 The Apriori Algorithm — Example Database D Scan D C1C1 L1L1 L2L2 C2C2 C2C2 C3C3 L3L3

14 Training from Labeled Data Learning problem treated as a text classification problem. Only one text classifier for each semantic feature. e.g Price of product will be classified as either discount or average or luxury. Age group is classified as Juniors or Teens or GenX or Mature or All Ages. Classification was performed using Naïve Bayes classification.

15 Sample Association Rules Informal <- Sportswear 24.5%93.6% Informal <- Loungewear 16.1%82.3% Informal <- Juniors12.1%89.4% PricePoint =Ave <- BrandAppeal=2 8.8%79.0% BrandAppeal=5 <- Trendy=5 16.3%91.2% Sportswear <- Sporty=4 9.0%85.7% AgeGroup=Mature <- Trendy=1 9.4%78.8% RuleSupportConfidence

16 Naïve Bayes Simple but effective text classification method. Class is selected according to class prior probabilities. This Model assumes each word in a document is generated independently of the other in the class. where N(w t,d i ) = count of times word w t occurs in document d i and Pr(cj,di) = {0,1)

17 Incorporating Unlabeled Data Initial sample was for 600 products only. Need to take care of unlabeled products to make any meaningful predictions. Use of Supervised learning algorithms. These algorithms have proved to reduce the classification error considerably. Use of Expectation-Maximization (EM) Algorithm as the supervised technique.

18 Expectation-Maximization (EM) Method EM is an iterative statistical technique for maximum likelihood estimation for incomplete data. In the retail classification problem, unlabeled data is considered as incomplete data. EM  Locally maximizes the likelihood of the parameter. Gives estimates for missing values.

19 Expectation-Maximization (EM) Method- cont EM method is a 2-step process. Initial Parameters are set using naïve Bayes from just the labeled documents. Subsequent iteration of E- and M-Steps. E-Step Calculates probabilistically weighed class label Pr(c j |d j ), for every unlabeled document. M-Step Estimates new classifier parameter using all documents (Equation 1). E and M steps iterated unless classifier converges

20 Experimental Results Baseline29%24%68%39%49%29%36% Naïve Bayes 66%57%76%80%70%69%82% EM78%70%82%84%78%80%91% Algorithm Age Group FunctionalityFormalityConservationSportinessTrendiness Brand Appeal

21 Experimental Results Brand Appeal=5(high)Conservative=5(high)Conservative=1(low)Formality=InformalSomewhat Formal Lauren Ralph DKNY Kenneth Cole imported Lauren Ralph Breasted Seasonless Trouser Jones Sport Classic blazer Rose Special Leopard Chemise Straps Flirty Spray Silk platform Jean Tommy Jeans Denim Sweater Pocket Neck Tee Hilfiger Jacket Fully Button Skirt Lines York Seam Crepe leather AgeGroup=JuniorFunctionality=LoungewearFunctionality=PartywearSportiness=5(High)Trendiness=1(low) Jrs Dkny Jeans Tee Colligate Logo Tommy Polo Short sneaker Chemise Silk Kimono Calvin Klein August Lounge Hilfiger Robe gown Rock Dress Sateen Length Skirt Shirtdress Open Platform Plaid flower Sneaker Camp Base Rubber Sole White Miraclesuite Athletic Nylon Mesh Lauren Seasonless Breasted Trouser Pocket Carefree Ralph Blazer button

22 Results on new data set The subset of data that was used earlier was from a single retailer. Another sample of data was collected from variety of retailers. The results are as follows. Results are consistently better. Algorithm Age Group FunctionalityFormalityConservationSportinessTrendinessBrandAppeal Naïve Bayes 83%45%61%70%81%80%87%

23 Recommender System Creation of customer profiles (real time) is feasible by analyzing the text associated with products and by mapping it to pre-defined semantic features. Identity of customer is not known and prior transaction history is unknown. Semantic features are inferred by the “browsing” pattern of the customer. Helps in suggesting new products to the customers.

24 Recommender System Mathematically  P(A ij |Product) Where A ij is the j th value of i th attribute i=semantic attributes, j=possible values User profile is constructed as follows Pr(U i,j |Past N Items) = 1/N i,jis calculated

25 Types of Recommender Systems Two Types of Recommender Systems. Collaborative Filtering. Collect user feedback in terms of ratings. Exploit similarities and differences of customers to recommend items. Issues Sparsity Problem. New Items. Content Filtering Compares the contents Issues Narrow in scope Recommends similar products only

26 Conclusions The systems learns from the use of supervised and semi-supervised techniques. Major assumptions..Products accurately convey the semantic attributes.?? Small sample of data used to Infer results. Practical applications not verified. System bootstrapped from a small number of labeled training examples. Interesting application which could be evolved to generate trends for retail marketers.


Download ppt "Using Text Mining to Infer Semantic Attributes for Retail Data Mining Authors: Rayid Ghani & Andrew E. Fano Presenter: Vishal Mahajan INFS795."

Similar presentations


Ads by Google