Download presentation

Presentation is loading. Please wait.

Published byCorey King Modified over 4 years ago

1
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Simple Linear Regression Analysis Chapter 13

2
13-2 The Goal This chapter talks about methods for 1.Measuring linear correlation between two variables 2.Describing a linear relationship between two variables with a linear equation 3.Making predictions with linear regression model 4.Describing the usefulness of a linear regression model

3
13-3 Different Values of the Correlation Coefficient

4
13-4 Measure the linear Relationship: The Simple Correlation Coefficient The linear coefficient (or simple correlation coefficient) r is a numerical measure of the strength of the linear relationship between two variables representing quantitative data.

5
13-5 Interpret the Correlation Coefficient r If r>0 we say the two variables are positively correlated; if r<0 we say they are negatively correlated. If the absolute value of r is ≥ 0.8, we say the linear relationship is strong; If the absolute value of r is below 0.8 but ≥ 0.5, we say the linear relationship is moderate. If the absolute value of r is below 0.5, we say the linear relationship is weak.

6
13-6 Properties of the Correlation Coefficient r 1.The value of r is always between -1 and +1. 2. The value for r does not change if all values of either variables are converted to a different scale. 3. The value of r is not affected by the choice of x or y. Interchange all x and y values and the value of r will not change. 4. r measures the strength of a linear relationship. It is not designed to measure the strength of a relationship that is not linear.

7
13-7 The Simple Linear Regression Model and the Least Squares Point Estimates The dependent (or response) variable is the variable we wish to understand or predict, denoted by Y The independent (or predictor or explanatory ) variable is the variable we will use to understand or predict the dependent variable, denoted by X Regression analysis is a statistical technique that uses observed data to relate the dependent variable to one or more independent variables

8
13-8 Form of The Simple Linear Regression Model Y = β 0 + β 1 X + ε β 0 + β 1 X is the mean value of the dependent variable Y when the value of the independent variable is X. The mean is in the form of a linear function. The mean determines the overall trend of the relationship between X and Y. β 0 is the y-intercept, the mean of y when X is 0; β 1 is the slope, the change in the mean of Y per unit change in X ε is an error term that describes the effect on Y of all factors other than X y ̂ = b 0 + b 1 x, y ̂ is the estimate of mean value of Y when X=x

9
13-9 The Least Squares Estimation Method

10
13-10 The Simple Linear Regression Model Illustrated

11
13-11 The Least Squares Point Estimates Estimation/prediction equation y ̂ = b 0 + b 1 x Least squares point estimate of the slope β 1

12
13-12 The Least Squares Point Estimates Continued Least squares point estimate of the y- intercept 0

13
13-13 Testing the Significance of the Slope A regression model is not likely to be useful unless there is a significant relationship between x and y To test significance, we use the null hypothesis: H 0 : β 1 = 0 Versus the alternative hypothesis: H a : β 1 ≠ 0

14
13-14 Testing the Significance of the Slope #2 AlternativeReject H 0 Ifp-Value H a : β 1 ≠ 0|t| > t α/2 * Twice area under t distribution right of |t| * That is t > t α/2 or t < –t α/2 t , t /2 and p-values are based on n–2 degrees of freedom

15
13-15 The Simple Coefficient of Determination and Correlation How useful is a particular regression model? One measure of usefulness is the simple coefficient of determination It is represented by the symbol r 2, because it is actually equal to the square of (simple) Correlation Coefficient which is denoted by r. It is interpreted as the percentage of variation in Y that could be explained by the linear regression line b 0 + b 1 x

16
13-16 Prediction To estimate the mean value of Y for X= x 0, one just need to plug x 0 into the regression line formula and calculate the estimate of Y by b 0 + b 1 x 0. We usually denote the estimated mean value of Y from the regression line by y ̂ = b 0 + b 1 x 0 and call y ̂ the fitted value for X= x 0. window

Similar presentations

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google