Presentation is loading. Please wait.

Presentation is loading. Please wait.

INDEKS KELESTARIAN LINGKUNGAN = Environmental Sustainability Index

Similar presentations


Presentation on theme: "INDEKS KELESTARIAN LINGKUNGAN = Environmental Sustainability Index"— Presentation transcript:

1 INDEKS KELESTARIAN LINGKUNGAN = Environmental Sustainability Index
Diabstraksikan oleh: Smno.psl.ppsub.agst2012

2 ENVIRONMENTAL SUSTAINABILITY Environmental sustainability
involves making decisions and taking action that are in the interests of protecting the natural world, with particular emphasis on preserving the capability of the environment to support human life. Environmental sustainability is about making responsible decisions that will reduce your business' negative impact on the environment. It is not simply about reducing the amount of waste you produce or using less energy, but is concerned with developing processes that will lead to businesses becoming completely sustainable in the future. Diunduh dari: ……………… 6/12/2012

3 Sustainable development issues therefore include:
Ecological sustainability: Preventing damage to major biological life cycles, maintaining ecosystems and biodiversity; Sustainable resource use: Resource use should not threaten ecological sustainability and should be within the renewable capacity; Sustainable waste management and pollution prevention: Generation of waste and release of pollution should not threaten ecological sustainability and should be within the absorption capacity of the receiving environment; Development of a sustainable society: This is concerned with social inclusion and economic development to improve the quality of life for all, both in the short and long term. Sustainable development and the "Triple bottom line" Diunduh dari: 7/12/2012

4 The Need for an Environmental Sustainability Index
Counterpart to Competitiveness Index and other economic performance measures Benchmark environmental performance Better goals, programs, and policies Clarify environment/economic tradeoffs Requirements for Environmental Impact Assessments Environmental impact assessments are required for any projects likely to have a significant effect on the environment, and are mandatory for large energy projects and wastewater treatment plants. Planning authorities require the developer to produce an Environmental Statement including: A description of the development and data on the main impacts it is likely to have on the environment; A description of the likely significant environmental impacts including direct and indirect impacts: Impacts on human beings Use of natural and material resources, air and water Impacts on ecology Emissions of pollutants and elimination of waste Impacts on landscape and cultural heritage Assessment and forecasts of the effects of the use of natural resources, emissions, and waste in the short to long term including indirect, cumulative, temporary, and permanent effects; Measures envisaged to avoid, reduce, or remedy adverse effects; An outline of alternative solutions which have been studied. Sumber: Pilot Environmental Sustainability Index, Dan Esty, Yale, Marc Levy, Columbia, May 5, …………… diunduh 28/11/2012 Diunduh dari:

5 Analytical Foundations
Environmental Stresses Air Pollution Water Pollution/Use Ecosystem Stress Waste/Consumption Population Analytical Foundations Environmental Systems Urban Air Quality Water Quantity Water Quality Biodiversity Land Social and Institutional Capacity Science/Technical Capacity Rigorous Policy Debate Environmental Regulation and Management Tracking Environmental Conditions Eco-efficiency Public Choice Failures Global Stewardship Contribution to International Cooperation Impact on Global Commons Human Vulnerability Basic Sustenance Public Health Environmental Disasters Sumber: Pilot Environmental Sustainability Index, Dan Esty, Yale, Marc Levy, Columbia, May 5, …………… diunduh 28/11/2012

6 EMPIRICAL INPUTS For each factor, we identified 1-6 variables to serve as quantitative measures (65 total) For this pilot, we weighted the factors equally in computing the Index Factors 65 variables 5 components Index Sumber: Pilot Environmental Sustainability Index, Dan Esty, Yale, Marc Levy, Columbia, May 5, …………… diunduh 28/11/2012

7 Example: Social and Institutional Capacity
This is how the index is built up, piece by piece Example of variables utilized: Environmental Regulation and management Factor: 1) Transparency and stability of environmental regulations 2) Percentage of urban population with access to adequate sanitation 3) Percent land area under protected status (IUCN Categories I-V) Sumber: Pilot Environmental Sustainability Index, Dan Esty, Yale, Marc Levy, Columbia, May 5, …………… diunduh 28/11/2012

8 Example: Social and Institutional Capacity
Sumber: Pilot Environmental Sustainability Index, Dan Esty, Yale, Marc Levy, Columbia, May 5, …………… diunduh 28/11/2012

9 Example: Social and Institutional Capacity
Sumber: Pilot Environmental Sustainability Index, Dan Esty, Yale, Marc Levy, Columbia, May 5, …………… diunduh 28/11/2012

10 Putting the Index to Use: Assessing Environment/Economic Tradeoffs
Environmental sustainability does not appear to impose a constraint on economic growth These results are meant to illustrate the kinds of analysis that one can perform with an ESI – to show that it is a useful index. They are not meant to be iron-clad scientific results at this stage As hypothesized by Michael Porter, there may be a connection between good economic performance and good environmental performance Sumber: Pilot Environmental Sustainability Index, Dan Esty, Yale, Marc Levy, Columbia, May 5, …………… diunduh 28/11/2012

11 Why does this matter? Four perspectives on the relationship between economic performance and environmental sustainability Difficult tradeoffs – policy dilemmas Environmental Kuznets: just be patient Environment Economics Good things go together – policy “free lunch” Good indicators are vital All combinations are possible – importance of responsible policy choices Sumber: Pilot Environmental Sustainability Index, Dan Esty, Yale, Marc Levy, Columbia, May 5, …………… diunduh 28/11/2012

12 (Does the world really need another environmental indicator?)
Measuring environmental sustainability is possible and useful This is a surprising, and encouraging, result Some aspects appear to be easier to quantify than others Some surprises here (capacity v. stress) LIVING GREENER Save energy and cost Save and re-use water Reduce wastes and recycle Travel snarter (Sumber: Energy is connected to nearly every aspect of daily life. But the energy sources we rely on most - like coal, oil and natural gas - are being used up and can’t be replaced for millions of years. Producing energy from these sources also releases harmful greenhouse gases which impact our environment. Sumber: Pilot Environmental Sustainability Index, Dan Esty, Yale, Marc Levy, Columbia, May 5, …………… diunduh 28/11/2012

13 A future ESI can improve on the Pilot
Investment in data creation Most global environmental monitoring programs are based on 19th century models – time to move forward Pluralistic, distributed networks (no central bottlenecks) Greater use of civil society Remote sensing and other advanced technologies More sophisticated methods to weight factors and test validity, understand underlying assumptions and values Factor analysis, time series analysis, regression analysis Interactive, open version Permit users to change factors and variables, change weights, add new variables Scalable version Permit users to integrate global, national, regional and local indicators as appropriate to their needs Sumber: Pilot Environmental Sustainability Index, Dan Esty, Yale, Marc Levy, Columbia, May 5, …………… diunduh 28/11/2012

14 Environmental Systems
Urban Air Quality Water Quantity Water Quality Biodiversity Land Sumber: Pilot Environmental Sustainability Index, Dan Esty, Yale, Marc Levy, Columbia, May 5, …………… diunduh 28/11/2012

15 URBAN AIR QUALITY

16 KUALITAS UDARA Air quality is defined as a measure of the condition of air relative to the requirements of one or more biotic species or to any human need or purpose. To compute the AQI requires an air pollutant concentration from a monitor or model. The function used to convert from air pollutant concentration to AQI varies by pollutant, and is different in different countries. Air quality index values are divided into ranges, and each range is assigned a descriptor and a color code. Standardized public health advisories are associated with each AQI range. The AQI can go up (meaning worse air quality) due to a lack of dilution of air pollutants. Stagnant air, often caused by an anticyclone, temperature inversion, or low wind speeds lets air pollution remain in a local area, leading to high concentrations of pollutants and hazy conditions. An agency might encourage members of the public to take public transportation or work from home when AQI levels are high. Diunduh dari: ……………… 28/11/2012

17 INDEKS KUALITAS UDARA An air quality index (AQI) is a number used by government agencies to communicate to the public how polluted the air is currently or how polluted it is forecast to become. As the AQI increases, an increasingly large percentage of the population is likely to experience increasingly severe adverse health effects. Different countries have their own air quality indices which are not all consistent. Different countries also use different names for their indices such as Air Quality Health Index, Air Pollution Index and Pollutant Standards Index. Diunduh dari: ……………… 28/11/2012

18 Air quality in Canada . Air quality in Canada has been reported for many years with provincial Air Quality Indices (AQIs). Significantly, AQI values reflect air quality management objectives, which are based on the lowest achievable emissions rate, and not exclusively concern for human health. The Air Quality Health Index or (AQHI) is a scale designed to help understand the impact of air quality on health. It is a health protection tool used to make decisions to reduce short-term exposure to air pollution by adjusting activity levels during increased levels of air pollution. The Air Quality Health Index provides a number from 1 to 10+ to indicate the level of health risk associated with local air quality. On occasion, when the amount of air pollution is abnormally high, the number may exceed 10. The AQHI provides a local air quality current value as well as a local air quality maximums forecast for today, tonight, and tomorrow, and provides associated health advice. 1 2 3 4 5 6 7 8 9 10 + Risk: Low (1-3) Moderate (4-6) High (7-10) Very high (above 10) Diunduh dari: ……………… 28/11/2012

19 Air quality in Canada Health Risk Air Quality Health Index
Health Messages At Risk population *General Population Low 1-3 Enjoy your usual outdoor activities. Ideal air quality for outdoor activities Moderate 4-6 Consider reducing or rescheduling strenuous activities outdoors if you are experiencing symptoms. No need to modify your usual outdoor activities unless you experience symptoms such as coughing and throat irritation. High 7-10 Reduce or reschedule strenuous activities outdoors. Children and the elderly should also take it easy. Consider reducing or rescheduling strenuous activities outdoors if you experience symptoms such as coughing and throat irritation. Very high Above 10 Avoid strenuous activities outdoors. Children and the elderly should also avoid outdoor physical exertion. Reduce or reschedule strenuous activities outdoors, especially if you experience symptoms such as coughing and throat irritation. Diunduh dari: ……………… 28/11/2012

20 INDEKS KUALITAS UDARA DI USA
The United States Environmental Protection Agency (EPA) has developed an index which they use to report daily air quality. This AQI is divided into six categories indicating increasing levels of health concern. An AQI value over 300 represents hazardous air quality whereas if it is below 50 the air quality is good Air Quality Index (AQI) Values Levels of Health Concern Colors 0 to 50 Good Green 51 to 100 Moderate Yellow 101 to 150 Unhealthy for Sensitive Groups Orange 151 to 200 Unhealthy Red 201 to 300 Very Unhealthy Purple 301 to 500 Hazardous Maroon Diunduh dari: ……………… 28/11/2012

21 I = the (Air Quality) index, C = the pollutant concentration,
. The AQI is based on the five pollutants regulated by the Clean Air Act: ground-level ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. The EPA has established National Ambient Air Quality Standards for all of these pollutants to protect public health. An AQI value of 100 generally corresponds to the standard for the pollutant.[3] The air quality index is a piecewise linear function of the pollutant concentration. At the boundary between AQI categories, there is a discontinuous jump of one AQI unit. To convert from concentration to AQI this equation is used:[15] where: I = the (Air Quality) index, C = the pollutant concentration, Clow = the concentration breakpoint that is ≤ , Chigh = the concentration breakpoint that is ≥ , Ilow = the index breakpoint corresponding to , Ihigh = the index breakpoint corresponding to . Diunduh dari: ……………… 28/11/2012

22 Unhealthy for Sensitive Groups
EPA's table of breakpoints for PM2.5 is: Category 15.4 50 Good 15.5 40.4 51 100 Moderate 40.5 65.4 101 150 Unhealthy for Sensitive Groups 65.5 150.4 151 200 Unhealthy 150.5 250.4 201 300 Very Unhealthy 250.5 350.4 301 400 Hazardous 350.5 500.4 401 500 Diunduh dari: ……………… 28/11/2012

23 INDOOR AIR QUALITY (IAQ)
Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and structures, especially as it relates to the health and comfort of building occupants. IAQ can be affected by gases (including carbon monoxide, radon, volatile organic compounds), particulates, microbial contaminants (mould, bacteria) or any mass or energy stressor that can induce adverse health conditions. Source control, filtration and the use of ventilation to dilute contaminants are the primary methods for improving indoor air quality in most buildings. Determination of IAQ involves the collection of air samples, monitoring human exposure to pollutants, collection of samples on building surfaces and computer modelling of air flow inside buildings. Diunduh dari: … …………… 28/11/2012

24 INDOOR AIR QUALITY (IAQ)
Second-hand smoke Second-hand smoke is tobacco smoke which affects other people other than the 'active' smoker. Second-hand tobacco smoke includes both a gaseous and a particulate phase, with particular hazards arising from levels of carbon monoxide (as indicated below) and very small particulates (at PM2.5 size) which get past the lung's natural defences. The only certain method to improve indoor air quality as regards second-hand smoke is the implementation of comprehensive smoke-free laws. Common pollutants 1.1 Second-hand smoke 1.2 Radon 1.3 Moulds and other allergens 1.4 Carbon monoxide 1.5 Volatile organic compounds 1.6 Legionella 1.7 Other bacteria 1.8 Asbestos fibres 1.9 Carbon dioxide 1.10 Ozone Diunduh dari: ……………… 28/11/2012

25 Volatile organic compounds
Volatile organic compounds (VOCs) are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects. Concentrations of many VOCs are consistently higher indoors (up to ten times higher) than outdoors. VOCs are emitted by a wide array of products numbering in the thousands. Examples include: paints and lacquers, paint strippers, cleaning supplies, pesticides, building materials and furnishings, office equipment such as copiers and printers, correction fluids and carbonless copy paper, graphics and craft materials including glues and adhesives, permanent markers, and photographic solutions.[5] Organic chemicals are widely used as ingredients in household products. Paints, varnishes, and wax all contain organic solvents, as do many cleaning, disinfecting, cosmetic, degreasing, and hobby products. Fuels are made up of organic chemicals. All of these products can release organic compounds during usage, and, to some degree, when they are stored. Testing emissions from building materials used indoors has become increasingly common for floor coverings, paints, and many other important indoor building materials and finishes. Diunduh dari: ……………… 28/11/2012

26 INDOOR ENVIRONMENTAL QUALITY (IEQ):
For additional support visit our client service page. Before “indoor environmental quality” or “IEQ” has completely lost its meaning, we want to bring attention to its definition which is a comprehensive term from the field of indoor climate engineering representing the collective influence from the indoor environment on all the physiological sensory systems of the human body which can be represented by; IEQ = IAQ +ITQ + ILQ + ISQ + IOQ + IVQ where I = Indoor, Q = Quality and, A = Air T = Thermal L = Lighting S = Sound O = Odour (odor) V = Vibrations Diunduh dari: ……………… 4/12/2012

27 VOLATILE ORGANIC COMPOUND (VOC)
A paint job that leaves you lightheaded, or new upholstery that has a funny scent-these are VOCs at work. These insidious chemicals are emitted, at room temperature, from many common household materials, paints, finishes, furnishings, and textiles. Examples of VOCs include benzene, formaldehyde, and methylene chloride. Some occur naturally in the materials; others are added during the manufacturing process. The offgassing of VOCs can have both short- and long-term adverse health effects, ranging from nausea and eye irritation to nervous system damage and cancer. These days, it's getting easier and easier to find no-VOC and low-VOC products such as paints, adhesives, and fabrics. Concentrations of VOCs in the air are considerably higher indoors than out, and VOCs in poorly ventilated buildings are a major cause of sick building syndrome (SBS). Look for products that are free of these chemicals whenever possible; otherwise, when using paints, varnishes, cleaning solvents, or any other products that contain them, take care to ventilate the work area well and dispose of the leftovers and waste properly afterward. Diunduh dari: ……………… 28/11/2012

28 WATER QUALITY It’s a simple fact - we can’t live without water.
People use it every day for drinking, washing and cooking, as well as for irrigating crops and generating electricity. Water is also essential for maintaining the health of natural systems, which in turn support us. There are many actions to take to use water wisely at home and in the garden to help secure water for our future. Sumber:

29 KUALITAS AIR Water quality refers to the chemical, physical and biological characteristics of water. It is a measure of the condition of water relative to the requirements of one or more biotic species and or to any human need or purpose.[2] It is most frequently used by reference to a set of standards against which compliance can be assessed. The most common standards used to assess water quality relate to health of ecosystems, safety of human contact and drinking water. The parameters for water quality are determined by the intended use. Work in the area of water quality tends to be focused on water that is treated for human consumption, industrial use, or in the environment. Diunduh dari: ……………… 28/11/2012

30 ENVIRONMENTAL WATER QUALITY
Environmental water quality, also called ambient water quality, relates to water bodies such as lakes, rivers, and oceans. Water quality standards for surface waters vary significantly due to different environmental conditions, ecosystems, and intended human uses. Toxic substances and high populations of certain microorganisms can present a health hazard for non-drinking purposes such as irrigation, swimming, fishing, rafting, boating, and industrial uses. These conditions may also affect wildlife, which use the water for drinking or as a habitat. Modern water quality laws generally specify protection of fisheries and recreational use and require, as a minimum, retention of current quality standards Diunduh dari: ……………… 28/11/2012

31 Freshwater environmental quality parameters
Freshwater environmental quality parameters are the natural and man-made chemical, biological and microbiological characteristics of rivers, lakes and ground-waters, the ways they are measured and the ways that they change. The values or concentrations attributed to such parameters can be used to describe the pollution status of an environment, its biotic status or to predict the likelihood or otherwise of a particular organisms being present. Monitoring of environmental quality parameters is a key activity in managing the environment, restoring polluted environments and anticipating the effects of man-made changes on the environment. Diunduh dari: ……………… 28/11/2012

32 HUMAN CONSUMPTION Contaminants that may be in untreated water include microorganisms such as viruses and bacteria; inorganic contaminants such as salts and metals; organic chemical contaminants from industrial processes and petroleum use; pesticides and herbicides; and radioactive contaminants. Water quality depends on the local geology and ecosystem, as well as human uses such as sewage dispersion, industrial pollution, use of water bodies as a heat sink, and overuse (which may lower the level of the water). In urbanized areas throughout the world, water purification technology is used in municipal water systems to remove contaminants from the source water (surface water or groundwater) before it is distributed to homes, businesses, schools and other users. Water drawn directly from a stream, lake, or aquifer and that has no treatment will be of uncertain quality. Diunduh dari: ……………… 28/11/2012

33 INDUSTRIAL AND DOMESTIC USE
Dissolved minerals may affect suitability of water for a range of industrial and domestic purposes. The most familiar of these is probably the presence of ions of calcium and magnesium which interfere with the cleaning action of soap, and can form hard sulfate and soft carbonate deposits in water heaters or boilers. Hard water may be softened to remove these ions. The softening process often substitutes sodium cations. Hard water may be preferable to soft water for human consumption, since health problems have been associated with excess sodium and with calcium and magnesium deficiencies. Softening may sacrifice nutrition for cleaning effectiveness Diunduh dari: ……………… 28/11/2012

34 DRINKING WATER INDICATORS
An electrical conductivity meter is used to measure total dissolved solids The following is a list of indicators often measured by situational category: Alkalinity Color of water pH Taste and odor (geosmin, 2-Methylisoborneol (MIB), etc.) Dissolved metals and salts (sodium, chloride, potassium, calcium, manganese, magnesium) Microorganisms such as fecal coliform bacteria (Escherichia coli), Cryptosporidium, and Giardia lamblia Dissolved metals and metalloids (lead, mercury, arsenic, etc.) Dissolved organics: colored dissolved organic matter (CDOM), dissolved organic carbon (DOC) Radon Heavy metals Pharmaceuticals Hormone analogs. Diunduh dari: ……………… 28/11/2012

35 Physical Indicators/ assessment
INDICATOR OF WATER Physical Indicators/ assessment Water Temperature Specifics Conductance or EC, Electrical Conductance, Conductivity Total suspended solids (TSS) Transparency or Turbidity Total dissolved solids (TDS) Odor of Water Color of water Taste of Water Diunduh dari: ……………… 28/11/2012

36 Diunduh dari: ……………… 28/11/2012
INDICATOR OF WATER Chemical Indicators/ assessment pH Total Hardness, Hard water, TH = Permanent Hardness + Temporary Hardness Dissolved oxygen (DO) Nitrat-N Orthofosfat Chemical oxygen demand (COD) Biochemical oxygen demand (BOD) Pestisida Logam-logam berat. Diunduh dari: ……………… 28/11/2012

37 Diunduh dari: ……………… 28/11/2012
INDICATOR OF WATER Biological Indicators/ assessment Ephemeroptera Plecoptera Trichoptera Escherichia Coli or E.Coli or E.coli Coliform Biological monitoring metrics have been developed in many places, and one widely used measure is the presence and abundance of members of the insect orders Ephemeroptera, Plecoptera and Trichoptera (EPT). EPT indexes will naturally vary from region to region, but generally, within a region, the greater the number of taxa from these orders, the better the water quality. EPA and other organizations in the United States offer guidance on developing a monitoring program and identifying members of these and other aquatic insect orders. Individuals interested in monitoring water quality who cannot afford or manage lab scale analysis can also use biological indicators to get a general reading of water quality. One example is the IOWATER volunteer water monitoring program, which includes a benthic macroinvertebrate indicator key. Diunduh dari: ……………… 28/11/2012

38 WATER QUALITY INDEX A water quality index provides a single number (like a grade) that expresses overall water quality at a certain location and time based on several water quality parameters. The objective of an index is to turn complex water quality data into information that is understandable and useable by the public. This type of index is similar to the index developed for air quality that shows if it’s a red or blue air quality day. The use of an index to "grade" water quality is a controversial issue among water quality scientists. A single number cannot tell the whole story of water quality; there are many other water quality parameters that are not included in the index. The index presented here is not specifically aimed at human health or aquatic life regulations. However, a water index based on some very important parameters can provide a simple indicator of water quality. It gives the public a general idea the possible problems with the water in the region. Diunduh dari: ……………… 28/11/2012

39 Diunduh dari: ……………… 28/11/2012
. Water Quality Standards and Reports 1. WHO Guideline World Health Organisation (WHO) guideline for Drinking Water Standards. 2. ICMR Standards ICMR Standards for Drinking Water. 3. International standards or ISI Satandards Water quality regulated by the International Organization for Standardization (ISO) is covered in the section of ICS ,[19] ranging from water sampling, drinking water, industrial class water, sewage water, and examination of water for chemical, physical or biological properties. ICS covers the standards of water supply systems.[20] Diunduh dari: ……………… 28/11/2012

40 . Water Quality Criteria
Section 304(a)(1) of the Clean Water Act requires us to develop criteria for water quality that accurately reflects the latest scientific knowledge. These criteria are based solely on data and scientific judgments on pollutant concentrations and environmental or human health effects. Section 304(a) also provides guidance to states and tribes in adopting water quality standards. Criteria are developed for the protection of aquatic life as well as for human health.  More general information on criteria. Diunduh dari: 28/11/2012

41 . Aquatic Life Aquatic Life criteria lists chemical concentration goals to protect surface water for aquatic life use. Biological criteria are based on the numbers and kinds of organisms present and describe the biological condition of aquatic communities inhabiting surface waters. Nutrients are substances used by living things that promote growth (e.g., nitrogen and phosphorus). We are developing nutrient criteria to prevent over enrichment in surface waters of the U.S. Diunduh dari: 28/11/2012

42 . Human Health Human Health includes technical information and guidance on surface water, drinking water and microbials. Microbial (Pathogen) criteria are used to protect the public from exposure to harmful levels of pathogens in ground and surface waters, food sources, and finished drinking water. Recreational Criteria protect people who swim and play in coastal recreational waters from exposure to pathogens. We held an Experts Scientific Workshop to help map our future directions. Diunduh dari: 28/11/2012

43 . Water Quality Index and Indicators
The integrity of an ecosystem is typically assessed through its ability to provide goods and services on a continuous basis. Together with the air we breathe, the provision of clean water is arguably the most fundamental service provided by ecosystems. Yet, human activities have fundamentally altered inland water ecosystems and their catchments. As a consequence species dependant on inland waters are more likely to go extinct, and future extinction rates of freshwater animals could be up to 5 times higher than for terrestrial animals. Water quality refers to the physical, chemical and biological characteristics of a water body. These characteristics determine how and for what water can be used and the species and ecosystem process it can support. Diunduh dari: 28/11/2012

44 . Global Drinking Water Quality Index
Drinking Water Quality Index (DWQI) all parameters regardless of WHO designation Source Water Quality Index (SWQI) health and microbial criteria only arsenic, boron, cadmium, chromium, copper, fluoride, lead, manganese, mercury, nitrate, nitrite, faecal coliforms Acceptability Water Quality Index (AWQI) acceptability criteria only ammonia, chloride, iron, pH, sodium, sulphate, zinc 4X4 Rule:  Each parameter that contributes to the index must be measured at least 4 times per year at stations that have measured a minimum of 4 parameters per year. Diunduh dari: ……………… 28/11/2012

45 Calculation of Global Water Quality Indices
Diunduh dari: ……………… 28/11/2012

46 usage domain correspond to each class (Adriano et al., 2006).
. In most of the cases, this index represents a numerical expression used in the assessment of the flowing water quality, through the framing of the values in five classes on the interval going from 1 to 100; a certain quality state, respectively a usage domain correspond to each class (Adriano et al., 2006). The raw values of each quality parameter must be compared with the standard threshold values that are taken into account for the computation of the index, in the view of the qualitative assessment. In all cases when the index must be determinate, the computation formula is the following: WQI – the Water Quality Index i – the quality parameter qi – the registered value wi – the rank of implication of the parameter in the computation formula The values of the Water Quality Index that were thus obtained are distributed on a number of intervals, which render the quality of the respective water and the usage domain (Table no. 1): 10–25 percent - highly polluted; 26–50 percent - polluted; 51–70 percent - reasonable; 71–90 percent - good; 91–100 percent - very good (House and Ellis, 1987). Diunduh dari: ……………… 28/11/2012

47 WATER QUANTITY

48 DOMESTIC WATER QUANTITY, SERVICE LEVEL AND HEALTH
The quantity of water delivered and used for households is an important aspect of domestic water supplies, which influences hygiene and therefore public health. Summary of requirement for water service level to promote health Service level Access measure Needs met Level of health concern No access (quantity collected often below 5 l/c/d) More than 1000m or 30 minutes total collection time Consumption – cannot be assured Hygiene – not possible (unless practised at source) Very high Basic access (average quantity unlikely to exceed 20 l/c/d) Between 100 and 1000m or 5 to 30 minutes total Consumption – should be assured Hygiene – handwashing and basic food hygiene possible; laundry/ bathing difficult to assure unless carried out at source High Intermediate access about 50 l/c/d) Water delivered through one tap onplot (or within 100m or 5 minutes total Consumption – assured Hygiene – all basic personal and food hygiene assured; laundry and bathing should also be assured Low Optimal access 100 l/c/d and above) Water supplied through multiple taps continuously Consumption – all needs met Hygiene – all needs should be met Very Low Diunduh dari: ……………… 4/12/2012

49 WATER QUANTITY ESTIMATION
The quantity of water required for municipal uses for which the water supply scheme has to be designed requires following data: Water consumption rate (Per Capita Demand in litres per day per head) Population to be served.     Quantity= Per capita demand x Population Water Consumption Rate It is very difficult to precisely assess the quantity of water demanded by the public, since there are many variable factors affecting water consumption. The various types of water demands, which a city may have, may be broken into following classes: Water Consumption for Various Purposes: Diunduh dari: ……………… 4/12/2012

50 WATER CONSUMPTION FOR VARIOUS PURPOSES Types of Consumption
Types of Consumption Normal Range (lit/capita/day) Average % 1 Domestic Consumption 65-300 160 35 2 Industrial and Commercial Demand 45-450 135 30 3 Public Uses including Fire Demand 20-90 45 10 4 Losses and Waste 45-150 62 25 Diunduh dari: 4/12/2012

51 FIRE FIGHTING DEMAND The per capita fire demand is very less on an average basis but the rate at which the water is required is very large. The rate of fire demand is sometimes traeted as a function of population and is worked out from following empirical formulae: Authority Formulae (P in thousand) Q for 1 lakh Population) 1 American Insurance Association Q (L/min)=4637 ÖP ( ÖP) 41760 2 Kuchling's Formula Q (L/min)=3182 ÖP 31800 3 Freeman's Formula Q (L/min)= (P/5+10) 35050 4 Ministry of Urban Development Manual Formula Q (kilo liters/d)=100 ÖP for P>50000 31623 Diunduh dari: 4/12/2012

52 FACTORS AFFECTING PER CAPITA DEMAND:
Size of the city: Per capita demand for big cities is generally large as compared to that for smaller towns as big cities have sewered houses. Adanya industri-industri. Kondisi iklim. Perilaku kebiasaan orang dan status ekonominya. Kualitas air: If water is aesthetically $ medically safe, the consumption will increase as people will not resort to private wells, etc. Pressure in the distribution system. Efficiency of water works administration: Leaks in water mains and services; and unauthorised use of water can be kept to a minimum by surveys. Biaya air. Policy of metering and charging method: Water tax is charged in two different ways: on the basis of meter reading and on the basis of certain fixed monthly rate. Diunduh dari: 4/12/2012

53 FLUCTUATIONS IN RATE OF DEMAND
Average Daily Per Capita Demand               = Quantity Required in 12 Months/ (365 x Population) If this average demand is supplied at all the times, it will not be sufficient to meet the fluctuations. Seasonal variation: The demand peaks during summer. Firebreak outs are generally more in summer, increasing demand. So, there is seasonal variation . Daily variation depends on the activity. People draw out more water on Sundays and Festival days, thus increasing demand on these days. Hourly variations are very important as they have a wide range. During active household working hours i.e. from six to ten in the morning and four to eight in the evening, the bulk of the daily requirement is taken. During other hours the requirement is negligible. Moreover, if a fire breaks out, a huge quantity of water is required to be supplied during short duration, necessitating the need for a maximum rate of hourly supply. Diunduh dari: 4/12/2012

54 FLUCTUATIONS IN RATE OF DEMAND
The adequate quantity of water must be available to meet the peak demand. To meet all the fluctuations, the supply pipes, service reservoirs and distribution pipes must be properly proportioned. The water is supplied by pumping directly and the pumps and distribution system must be designed to meet the peak demand. The effect of monthly variation influences the design of storage reservoirs and the hourly variations influences the design of pumps and service reservoirs. As the population decreases, the fluctuation rate increases. Maximum daily demand = 1.8 x average daily demand Maximum hourly demand of maximum day i.e. Peak demand                = 1.5 x average hourly demand                = 1.5 x Maximum daily demand/24                = 1.5 x (1.8 x average daily demand)/24                = 2.7 x average daily demand/24                = 2.7 x annual average hourly demand Diunduh dari: 4/12/2012

55 DESIGN PERIODS & POPULATION FORECAST
This quantity should be worked out with due provision for the estimated requirements of the future . The future period for which a provision is made in the water supply scheme is known as the design period. Design period is estimated based on the following: Useful life of the component, considering obsolescence, wear, tear, etc. Expandability aspect. Anticipated rate of growth of population, including industrial, commercial developments & migration-immigration. Available resources. Performance of the system during initial period. Diunduh dari: 4/12/2012

56 Water quantity stressors include :
The word stress is used to talk about problems with water quantity, or the ability of a drinking water system to supply enough water. It is important to understand when, where and how water is leaving a drinking water source and compare it to how quickly that source can be naturally replenished. It is also important to look at water takings and water supply trends. What results from looking at all of these factors is a water budget, which is useful in predicting water supply shortages and planning for those shortages. Water quantity stresses can lead to water quality issues as too little water in a source can mean contaminants are more concentrated and therefore, may be above acceptable levels. Water quantity stressors include : water that is taken by municipalities for drinking water; water that is taken by industry for manufacturing processing; water that is taken by business for activities such as food and beverage processing; water that is taken by agricultural for irrigation; private well use. Diunduh dari: https://docs.google.com/viewer?a=v&q=cache:qlbP8LaJgEgJ:www.conservation-ontario.on.ca/… 4/12/2012

57 POTENTIAL WATER QUANTITY ISSUES
Taking too much water from a source of water, such as a surface water body or aquifer, can mean that the water source is stressed. This may develop into to a water quantity issue should more water be taken from a source than can be naturally replenished. Some of the common reasons for taking water include: Municipal water takings for domestic, industrial, commercial and institutional use Agricultural water takings Private wells taking water for domestic use Industrial takings such as for aggregate extraction, mining, forestry, food processing, bottled water and greenhouse operations Recreational takings such as for golf courses and bait harvesters in some areas. Diunduh dari: https://docs.google.com/viewer?a=v&q=cache:qlbP8LaJgEgJ:www.conservation-ontario.on.ca/… 4/12/2012

58 THE THINGS TO PROTECT WATER:
Conserve water. Not only is conserving water helpful to maintaining a constant supply of drinking water, too little water in a source can mean contaminants are more concentrated and, therefore, may be above acceptable levels. Be an avid recycler. Recycling paper products, glass, metals and plastics cuts down on pollution and also reduces the amount of water we use. Manufacturing recycled paper uses 58% less water than making paper from virgin wood pulp. Making glass from recycled materials cuts related air pollution 20% and water pollution 50%. Dispose of hazardous waste properly. Take unused paints, cleaners, pesticides, and medical prescriptions to your local hazardous waste facility. Take used engine oil to recycling facilities. Use drop cloths or tarps when working with hazardous materials such as paints, driveway sealers or wood stain to prevent spills from leaking into the ground. If a spill occurs, clean it up with an absorbent material such as kitty litter or sawdust and scoop the contaminant into a container. Use non-toxic products for cleaning and environmentally-friendly soaps, shampoos and personal care products. Remember that what you use in your house goes back down your drain. Clean up pet waste which contains nutrients and pathogens that can run into storm sewers during a rain storm. Prevent pollutants from entering into runoff by reducing or eliminating the use of pesticides, fertilizers, sidewalk salts and by not over-watering your lawn. If you run an agricultural operation and haven’t already, consider developing and implementing a Nutrient Management Plan. Take care when refueling gas tanks for cars, lawn mowers, chainsaws, weed trimmers, tractors or other machinery to avoid spilling fuel on the ground. Also take care when changing engine oil. One litre of gas or oil can contaminate a million litres of groundwater. Take your car to commercial car washes designed to prevent pollutant runoff from entering storm sewers. Use commercial car washes that use water efficient sprays, reducing their water consumption Diunduh dari: https://docs.google.com/viewer?a=v&q=cache:qlbP8LaJgEgJ:www.conservation-ontario.on.ca/… 4/12/2012

59 Manage animal waste on farms to prevent water contamination.
SOME WAYS TO PROTECT WATER FOR THOSE WHO LIVE ON RURAL PROPERTIES INCLUDE: Keep your septic system in proper working order and empty the tank regularly. Protect and maintain your private well. Wells provide pathways for contaminants to enter the groundwater. If you have a well, be sure it is sealed properly and if you own a well you no longer use, have it properly decommissioned by a licensed well technician. Test your well water regularly to ensure the water is safe to drink. Manage animal waste on farms to prevent water contamination. Manage livestock grazing. Overgrazing exposes soil and increases erosion. Protect the vegetation along the banks of ponds, streams and lakes to help control erosion, provide food for aquatic life, and maintain cooler water temperatures necessary for some species of fish. Diunduh dari: https://docs.google.com/viewer?a=v&q=cache:qlbP8LaJgEgJ:www.conservation-ontario.on.ca/… 4/12/2012

60 WATER QUANTITY EVALUATION
Water quantity is evaluated differently for rivers and streams, lakes and groundwater. Rivers and streams. Streamflow hydrographs record data from gauges installed in waterways, indicating how much water flows past a fixed point, over time. Lakes. Lake bathymetry uses sonar devices to measure variations in water depth, then links this measurement to the lake's surface area and volume change with depth. This allows for estimates of water gained and lost as the lake's level goes up or down. Bathymetric surveys are commercially available for many Alberta lakes. Groundwater . Difficult to quantify because of geological variables, but can be achieved using computer flow modeling. A pump test can demonstrate the sustainable productivity of a single, groundwater well. However the groundwater resource of an entire area is at best an approximation. Precipitation . Alberta Environment and its stakeholders have a network of precipitation gauges throughout the province, providing a good measure of distribution and quantity of the province's rainfall. This is critical in evaluating potential water availability. Alberta also collects real time precipitation from many stations and regularly produces summary maps of the province-wide distribution of precipitation. Diunduh dari: ……………… 4/12/2012

61 BIODIVERSITY QUALITY

62 BIODIVERSITY = KEANEKA RAGAMAN HAYATI
Keragaman hayati (biodiversity atau biological diversity) merupakan istilah yang digunakan untuk menggambarkan kekayaan berbagai bentuk kehidupan di bumi ini mulai dari organisme bersel tunggal sampai organisme tingkat tinggi. Keragaman hayati mencakup keragaman habitat, keragaman spesies (jenis) dan keragaman genetik (variasi sifat dalam spesies) Keanekaragaman Hayati adalah tingkat variasi bentuk kehidupan dalam suatu ekosistem tertentu, bioma, atau seluruh planet. Keanekaragaman Hayati adalah ukuran dari kesehatan ekosistem. Keanekaragaman Hayati adalah sebagian fungsi dari iklim. Pada habitat darat, daerah tropis biasanya kaya sedangkan daerah-daerah kutub dukungan spesies yang lebih sedikit. Perubahan lingkungan yang cepat biasanya menyebabkan kepunahan massa. Salah satu perkiraan adalah bahwa kurang dari 1% dari spesies yang telah ada di Bumi yang masih ada. Keanekaragaman Hayati adalah keseluruhan variasi berupa bentuk, penampilan, jumlah, dan sifat yang dapat ditemukan pada makhluk hidup.Keanekaragaman hayati merupakan lahan penelitian dan pengembangan ilmu yang sangat berguna untuk kehidupan manusia. Diunduh dari: 4/12/2012

63 KEANEKARAGAMAN HAYATI
Keanekaragaman hayati menekankan pada semua jenis spesies tumbuhan, hewan dan mikroorganisme juga dengan ekosistimnya dimana mereka merupakan bagian yang tak terpisahkan, termasuk jumlah dan frekuensi ekosistem, spesies dan gen yang saling berkaitan. Ada tiga macam keanekaragaman hayati, yaitu : a. Keanekaragaman spesies (Species Diversity) b. Keanekaragaman ekosistem (Ecosystem Diversity) c. Keanekaragaman genetika (Genetic Diversity) Diunduh dari: ……………… 4/12/2012

64 Species Richness Index: Simpson’s Index
Keanekaragaman spesies / jenis (Species Diversity) Keanekaragaman spesies terbentuk oleh adanya kesesuaian kandungan genetika yang mengatur sifat dari kebakaan dengan lingkungan terhadap anggota jenis yang sama yang dalam hal ini memiliki kerangka dasar, komponen genetika khususnya kromosom yang sama. Species Richness Index: Simpson’s Index Simpson gave the probability of any two individuals drawn at random from an infinitely large community belonging to different species. The Simpson index is therefore expressed as 1-D or 1/D. Simpson’s index is heavily weighed towards the most abundant species in the sample while being less sensitive to species richness. It has been shown that once the number of species exceeds 10 the underlying species abundance distribution is important in determining whether the index has a high or low value. The D value which is standing for the dominance index is used in pollution monitoring studies. As D increases, diversity decreases. (diunduh dari: Diunduh dari: ……………… 4/12/2012

65 Species Diversity Indices: Shannon-Wiener Index
Shannon and Wiener independently derived the function which has become known as Shannon index of diversity. This indeed assumes that individuals are randomly sampled from an independently large population. The index also assumes that all the species are represented in the sample. Log2 is often used for calculating this diversity index but any log base may be used. It is of course essential to be consistent in the choice of log base when comparing diversity between samples or estimating evenness. The value of Shannon diversity is usually found to fall between 1.5 and 3.5 and only rarely it surpasses 4.5. It has been reported that under log normal distribution, 105 specieswillbe needed to produce a value of Shannon diversity more than 5. Expected Shannon diversity is also used (Exp H’) as an alternative to H’. Exp H’ is equivalent to the number of equally common species required to produce the value of H’ given by the sample. The observed diversity (H’) is always compared with maximum Shannon diversity (Hmax) which could possibly occur in a situation where all species were equally Abundant. Diunduh dari: ……………… 4/12/2012 Species Diversity Indices Shannon-Wiener Index Shannon and Wiener independently derived the function which has become known as Shannon index of diversity. This indeed assumes that individuals are randomly sampled from an independently large population. The index also assumes that all the species are represented in the sample. Log2 is often used for calculating this diversity index but any log base may be used. It is of course essential to be consistent in the choice of log base when comparing diversity between samples or estimating evenness. The value of Shannon diversity is usually found to fall between 1.5 and 3.5 and only rarely it surpasses 4.5. It has been reported that under log normal distribution, 105 specieswillbe needed to produce a value of Shannon diversity more than 5. Expected Shannon diversity is also used (Exp H’) as an alternative to H’. Exp H’ is equivalent to the number of equally common species required to produce the value of H’ given by the sample. The observed diversity (H’) is always compared with maximum Shannon diversity (Hmax) which could possibly occur in a situation where all species were equally abundan