Download presentation

1
**5-4 Factoring Polynomials**

Objectives: Students will be able to: Factor polynomials Simplify polynomial quotients by factoring

2
Factoring There are various different techniques used to factor polynomials. The technique(s) used depend on the number of terms in the polynomial, and what those terms are. Throughout this section we will examine different factoring techniques and how to utilize one or more of those techniques to factor a polynomial.

3
What is a GCF Greatest common factor (GCF): largest factor that all terms have in common You can find the GCF for a polynomial of two or more terms.

4
Example 1: Finding a GCF Example 1: Find the GCF of each set of monomials. 8, 12 b) 10, 21 c) 24, 60, 36 4 1 12

5
Ex 1: Finding GCFs 2x2 6a2b 3xy2 4x 3x2

6
**Factoring a Polynomial w/GCF**

Determine what the GCF of the terms is, and factor that out Rewrite the expression using the distributive property

7
**Ex 2: Factoring By Distributive Property**

Factor each polynomial.

8
Try these.

9
Grouping Grouping is a factoring technique used when a polynomial contains four or more terms.

10
**Steps for Factoring By Grouping**

Group terms with common factors (separate the polynomial expression into the sum of two separate expressions) Factor the GCF out of each expression Rewrite the expression using the distributive property (factor into a binomial multiplied by a binomial)

11
**Example 3: Factor each polynomial.**

12
**Ex 3: Factor each polynomial.**

13
Ex 3: Continued.

14
Ex 3: Cont.

15
**Factoring Trinomials The standard form for a trinomial is:**

The goal of factoring a trinomial is to factor it into two binomials. [If we re-multiplied the binomials together, that should get us back to the original trinomial.]

16
**Steps to factor a Trinomial**

Steps for factoring a trinomial Multiply a * c 2) Look for factors of the product in step 1 that add to give you the ‘b’ term. 3) Rewrite the ‘b’ term using these two factors. 4) Factor by grouping.

17
**Ex4: Factoring Trinomials**

18
**Example 4: Factor each polynomial**

19
Try some more…

20
Try some more…

21
Try these.

22
More Examples

23
More Examples

24
Look For GCF first! There are instances when a polynomial will have a GCF that can be factored out first. Doing so will make factoring a trinomial much easier.

25
**Ex 5: Factor each polynomial**

26
**Ex 5: Factor each polynomial**

27
Ex 5: GCF first!

28
**Additional Factoring Techniques**

There are certain binomials that are factorable, but cannot be factored using any of the previous factoring techniques. These binomials deal with perfect square factors or perfect cube factors.

29
**Factoring Differences of Squares**

30
**Factoring Differences of Squares**

31
**Factoring Differences of Squares**

32
**Factoring Differences of Squares**

GCF first!!

33
**Factoring Differences of Squares**

34
**Factoring Differences of Squares**

35
**Sum/Difference of Cubes**

36
**Sum/Difference of Cubes**

37
Try these

38
Try these

39
Try these

40
**Simplifying Polynomial Quotients**

In the previous section (5-3), we learned to simplify the quotient of two polynomials using long division or synthetic division. Some quotients can be simplified using factoring. To do so: 1) factor the numerator (if possible) 2) factor the denominator (if possible) 3) reduce the fraction TIP: Be sure to check for values that the variable cannot equal. Remember that the denominator of a fraction can never be zero.

41
**Ex1: Simplify Factor Numerator and Denominator!**

Eliminate Common Factors in Numerator and Denominator!

42
Ex 2: Simplify

43
Ex 3: Simplify In order to eliminate common factors , one must be in the numerator an the other in the denominator. This expression cannot be simplified further…

44
To recap: Always try and factor out a GCF first, if possible. It will make life much easier.

Similar presentations

© 2020 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google