Presentation is loading. Please wait.

Presentation is loading. Please wait.

System On Chip - SoC 전북대학교 전자공학부 이종열.

Similar presentations


Presentation on theme: "System On Chip - SoC 전북대학교 전자공학부 이종열."— Presentation transcript:

1 System On Chip - SoC 전북대학교 전자공학부 이종열

2 3세대 iPod Shuffle 분해

3 3세대 iPod Shuffle 분해 2세대 iPod Shuffle

4 다른 MP3 player 분해

5 3세대 iPod Shuffle 분해 K9HB608U1A-BCBC

6 다른 MP3 Player

7 Outline Introduction What is SoC ? SoC characteristics
Benefits and drawbacks Solution Major SoC Applications Summary

8 Introduction Technological Advances
today’s chip can contains 100M transistors transistor gate lengths are now in term of nano meters approximately every 18 months the number of transistors on a chip doubles – Moore’s law The Consequences components connected on a Printed Circuit Board can now be integrated onto single chip hence the development of System-On-Chip design

9 Outline Introduction What is SoC ? SoC characteristics
Benefits and drawbacks Solution Major SoC Applications Summary

10 What is SoC ? People A: The VLSI manufacturing technology advances has made possible to put millions of transistors on a single die. It enables designers to put systems-on-a-chip that move everything from the board onto the chip eventually. People B: SoC is a high performance microprocessor, since we can program and give instruction to the uP to do whatever you want to do. People C: SoC is the efforts to integrate heterogeneous or different types of silicon IPs on to the same chip, like memory, uP, random logics, and analog circuitry. All of the above are partially right, but not very accurate!!!

11 What is SoC ? SoC not only chip, but more on “system”.
SoC = Chip + Software + Integration The SoC chip includes: Embedded processor ASIC Logics and analog circuitry Embedded memory The SoC Software includes: OS, compiler, simulator, firmware, driver, protocol stackIntegrated development environment (debugger, linker, ICE)Application interface (C/C++, assembly) The SoC Integration includes : The whole system solution Manufacture consultant Technical Supporting

12 Outline Introduction What is SoC ? SoC characteristics
Benefits and drawbacks Solution Major SoC Applications Summary

13 System on Chip architecture
ASIC Typical Design Steps Typical ASIC design can take up to two years to complete Top Level Design Unit Block Design Unit Block Verification Integration and Synthesis Trial Netlists Timing Convergence & Verification System Level Verification Fabrication DVT Prep DVT 6 12 12 4 14 ?? 5 8 Time in Weeks 48 Time to Mask order 61

14 System on Chip architecture
With increasing Complexity of IC’s and decreasing Geometry, IC Vendor steps of Placement, Layout and Fabrication are unlikely to be greatly reduced In fact there is a greater risk that Timing Convergence steps will involve more iteration. Need to reduce time before Vendor Steps. Need to consider Layout issues up-front. SoC Typical Design Steps Top Level Design Unit Block Design Unit Block Verification Integration and Synthesis Trial Netlists Timing Convergence & Verification System Level Verification Fabrication DVT Prep DVT 4 4 2 14 5 4 Time in Weeks 24 Time to Mask order 33

15 System on Chip interconnection
Design reuse is facilitated if “standard” internal connection buses are used . All cores connect to the bus via a standard interface . Any-to-any connections easy but … Not all connections are necessary . Global clocking scheme . Power consumption . Standardization is being addressed by the Virtual Socket Interface Alliance (VSIA)

16 System on Chip interconnection
AMBA (Advanced Microcontroller Bus Architecture) is a collection of buses from ARM for satisfying a range of different criteria. APB (Advanced Peripheral Bus): simple strobed-access bus with minimal interface complexity. Suitable for hosting peripherals. ASB (Advanced System Bus): a multimaster synchronous system bus. AHB (Advanced High Performance Bus): a high- throughput synchronous system backbone. Burst transfers and split transactions.

17 System on Chip cores One solution to the design productivity gap is to make ASIC designs more standardized by reusing segments of previously manufactured chips. These segments are known as “blocks”, “macros”, “cores” or “cells”. The blocks can either be developed in-house or licensed from an IP company. Cores are the basic building blocks .

18 System on Chip cores Soft Macro Firm Macro Hard Macro
Reusable synthesizable RTL or netlist of generic library elements User of the core is responsible for the implementation and layout Firm Macro Structurally and topologically optimized for performance and area through floor planning and placement Exist as synthesized code or as a netlist of generic library elements Hard Macro Reusable blocks optimized for performance, power, size and mapped to a specific process technology Exist as fully placed and routed netlist and as a fixed layout such as in GDSII format .

19 System on Chip cores Soft core Firm core Hard core Reusability
portability flexibility Firm core Hard core Predictability, performance, time to market

20 System on Chip cores Locating the required cores and associated contract discussions can be a lengthy process Identification of IP vendors Evaluation criteria Comparative evaluation exercise Choice of core Contract negotiations Reuse restrictions Costs: license, royalty, tool costs Core integration, simulation and verification

21 Outline Introduction What is SoC ? SoC characteristics
Benefits and drawbacks Solution Major SoC Applications Summary

22 The Benefits There are several benefits in integrating a large digital system into a single integrated circuit . These include Lower cost per gate . Lower power consumption . Faster circuit operation . More reliable implementation . Smaller physical size . Greater design security .

23 The Drawbacks The principle drawbacks of SoC design are associated with the design pressures imposed on today’s engineers , such as : Time-to-market demands . Exponential fabrication cost . Increased system complexity . Increased verification requirements .

24 Design gap

25 Outline Introduction What is SoC ? SoC characteristics
Benefits and drawbacks Solution Major SoC Applications Summary

26 Solution is Design Re-use
Overcome complexity and verification issues by designing Intellectual Property (IP) to be re-usable . Done on such a scale that a new industry has been developed. Design activity is split into two groups: IP Authors – producers . IP Integrators – consumers . IP Authors produce fully verified IP libraries Thus making overall verification task more manageable IP Integrators select, evaluate, integrate IP from multiple vendors IP integrated onto Integration Platform designed with specific application in mind

27 Outline Introduction What is SoC ? SoC characteristics
Benefits and drawbacks Solution Major SoC Applications Summary

28 Major SoC Applications
Speech Signal Processing . Image and Video Signal Processing . Information Technologies PC interface (USB, PCI,PCI-Express, IDE,..etc) Computer peripheries (printer control, LCD monitor controller, DVD controller,.etc) . Data Communication Wireline Communication: 10/100 Based-T, xDSL, Gigabit Ethernet,.. Etc Wireless communication: BlueTooth, WLAN, 2G/3G/4G, WiMax, UWB, …,etc

29 Outline Introduction What is SoC ? SoC characteristics
Benefits and drawbacks Solution Major SoC Applications Summary

30 Summary Technological advances mean that complete systems can now be implemented on a single chip . The benefits that this brings are significant in terms of speed , area and power . The drawbacks are that these systems are extremely complex requiring amounts of verification . The solution is to design and verify re-useable IP .

31 SoC Trends The SoC Paradigm and Key Trends Time to Market Pressure
Design Complexity Issues Deep Submicron Effects

32 Moore’s Law and Technology Scaling

33 ITRS Roadmap

34 Accelerated IC Process Technology

35 SoC Paradigm

36 SoC Co-Design Flow

37 SoC: At the Heart of Conflicting Trends

38 Ths SoC Challenges and Key Enablers

39 Evolutionary Problems
Key Challenges Improve productivity HW/SW codesign, Transaction-Level Modeling Integration of analog & RF Ips Improved DFT Evolutionary techniques: IP (Intellectual Property) based design Platform-based design

40 SoC Economic Trends: Mask NRE

41 Productivity Gap

42 ASIC v.s. FPGA Complexity

43 Key Trends ASIC/ASSP (application-specific standard-product) ratio:
80/20 in 2000, 50/50 now In-house ASIC design is down Replaced by off-the-shelf, programmable ASSP Number embedded processors in SoC rising: ST: recordable DVD 5 Hughes: set-top box 7 Agere: Wireless base station 8 ST: HDTV platform 8 Latest mobile handsets 10 NEC: Image processor 128 ST: NPU >150

44 IP Reuse and IP-Based SoC Design

45 SoC Design + Rising Complexity = New Challenges

46 Key Trends: Embedded S/W Content in SoC is Way Up
eS/W: Current application complexity Set-top box: >1 million lines of code Digital audio processing: >1 million lines of code Recordable DVD: Over 100 person-years effort Hard-disk drive: Over 100 person-years effort In multimedia systems S/W cost (licenses) 6X larger than H/W chip cost eS/W uses 50% to 80% of design resources eS/W now an essential part of SoC products

47 Current Practice Heterogeneous multi-processor SoCs are already current practice Problem is that each system is an ad-hoc solution: reaching complexity barrier Little flexibility No effective programming model Lots of low-level programming Poor SW productivity Code not portable

48 Next-Generation SoC Platforms Key Objectives
Flexibility: amortize NRE over more products ‘Softer’ systems: eFPGA, eSoG, eProcessors, combined with standard H/W IP (I/O, peripherals) Fast platform implementation Use of synthesizable, off-the-shelf IP components Scalable SoC interconnect Trend towards standardized platforms Fast time-to-market for platform user Need clean programming model Shield architecture complexity

49 Networks on a chip

50 SoC for DVB

51 Network Processor


Download ppt "System On Chip - SoC 전북대학교 전자공학부 이종열."

Similar presentations


Ads by Google