Presentation is loading. Please wait.

Presentation is loading. Please wait.

Combined Series and Parallel Circuits Objectives: 1. Calculate the equivalent resistance, current, and voltage of series and parallel circuits. 2. Calculate.

Similar presentations


Presentation on theme: "Combined Series and Parallel Circuits Objectives: 1. Calculate the equivalent resistance, current, and voltage of series and parallel circuits. 2. Calculate."— Presentation transcript:

1 Combined Series and Parallel Circuits Objectives: 1. Calculate the equivalent resistance, current, and voltage of series and parallel circuits. 2. Calculate the equivalent resistance of circuits combining series and parallel connections. 3. To understand the origins of both of Kirchhoff's rules and how to use them to solve a circuit problem. 4. Solve circuit problems.

2 Resistance and Current Series Circuit Equivalent resistance is equal to the sum of all the resistance in the circuit. Circuit current is equal to the voltage source divided by the equivalent resistance.

3 Resistance and Current Parallel Circuit The reciprocal of the equivalent resistance is equal to the sum of the reciprocals of the individual resistances. The total current is the sum of all the currents. The potential difference across each resistor is the same

4 Household Circuits Why do the lights dim when the hair dryer goes on? Small resistance from wiring This is called a combination series and parallel circuit

5 Series and Parallel Circuits 1.Draw a diagram of the circuit 2.Find any resistors in parallel. They must have the same potential difference across them. Calculate the single equivalent resistance of a resistor that can replace them. 3.Are any resistors (including the parallel equivalent resistor) in series? Resistors in series have one and only one current path through them. Calculate the new single equivalent resistance that can replace them. Draw a new schematic diagram using that resistor. 4.Repeat steps 2 and 3 until you can reduce the current to a single resistor. Find the total circuit current. Then go backwards to find the currents through and the voltages across individual resistors.

6 1.The sum of the currents entering any junction must equal the sum of the currents leaving that junction. (junction rule) 2.The sum of the potential differences across all the elements around any closed circuit loop must equal zero. (loop rule) Kirchhoff’s Rules Gustav Kirchhoff - 1845

7 Kirchhoff’s Rules Kirchhoff's first law when officially stated sounds more complicated than it actually is. Generally speaking, it says, the total current entering a junction must equal the total current leaving the junction. After all, no charges can simply disappear or get created, so current can't disappear or be created either. A junction is any place in a circuit where more than two paths come together. Kirchhoff's second law when officially stated sounds more complicated than it actually is. Generally speaking, it says, around any loop in a circuit, the voltage rises must equal the voltage drops. Another way of thinking about this is to consider that whatever energy a charge starts with in a circuit loop, it must end up losing all that energy by the time it gets to the end. Or we could say that by the time a charge makes it to the end of a circuit, it must have given all its energy to do work.

8 In this example you will notice that 8 Amps of current enter the junction and 3 and 5 Amps leave the junction. This makes a total of 8 Amps entering and 8 Amps leaving. In this example you will notice 8 Amps and 1 Amp entering the junction and 9 Amps leaving. This makes a total of 9 Amps entering and 9 Amps leaving. In this example you will notice 8 Amps and 1 Amp entering the junction while 7 Amps and 2 Amps leave. This makes a total of 9 Amps entering and 9 Amps leaving.

9 This is a simple circuit showing the potential differences across the source and the resistor. According to Kirchhoff's 2nd law the sum of the potential differences will be zero. This diagram shows the potentials in the little circles and then shows the potential differences off to the side. Notice that the potential difference is actually the difference between one potential and another. Moving from a low potential to a high potential is considered a potential rise or positive potential difference. Moving from a high potential to a lower potential is considered a potential drop or negative potential difference. This animation shows the same circuit as above but only looks at the potential differences as you go around the loop. Again, Kirchhoff's 2nd law says the sum of the potential differences has to be zero.

10 Now lets try some problems Don’t wait to get totally lost. Ask your questions as they come to you.

11 #1 Series Circuit R t = R 1 + R 2 + R 3 + … R t = 4 + 6 + 3 + 1 = 14  I = V  R I = 40  14 = 2.86 amps

12 #2 Series Circuit R t = R 1 + R 2 + R 3 + … R t = 5 + 4 + 12 = 21  I = V  R I = 10  21 = 0.476 amps

13 #3 Series Circuit R t = R 1 + R 2 + R 3 + … R t = 3 + 1 + 7 = 11  I = V  R I = 120  11 = 10.9 amps

14 #4 Series Circuit R t = R 1 + R 2 + R 3 + … R t = 5 + 1 + 6 + 3 + 4 + 1 = 20  I = V  R I = 9  20 = 0.45 amps

15 #5 Series Circuit R t = R 1 + R 2 + R 3 + … R t = 12 + 20 + 5 = 37  I = V  R I = 60  37 = 1.62 amps

16 #6 Parallel Circuit 1/R t = 1/R 1 + 1/R 2 + 1/R 3 + … 1/R t = 1/2 + 1/2 + 1/2 = 1.5 R t = 0.667  I = V  R I = 6  0.667 = 9.00 amps

17 #7 Parallel Circuit 1/R t = 1/R 1 + 1/R 2 + 1/R 3 + … 1/R t = 1/6 + 1/8 + 1/4 = 0.542 R t = 1.85  I = V  R I = 120  1.85 = 64.9 amps

18 #8 Parallel Circuit 1/R t = 1/R 1 + 1/R 2 + 1/R 3 + … 1/R t =1/2.5 + 1/6 + 1/1 = 1.57 R t = 0.638  I = V  R I = 14  0.638 = 21.9 amps

19 Now let’s put ‘em together Simplify diagram in steps to a single resistor Calculate total resistance and current for the whole circuit Then work backwards to find voltages and currents at individual resistors It takes time and care to do this right DON’T TRY TO RUSH THROUGH IT!

20 #9 The 2  and 3  resistors are in series with one another They combine to form a 5  resistor

21 The three resistors are hooked up in parallel with each other. 1/R t = 1/R 1 + 1/R 2 + 1/R 3 + … 1/R t =1/5 + 1/1 + 1/6 = 1.37 R t = 0.730  The circuit now looks like this I = V/R = 120/.730 = I = 164 amps

22 #10 Combine the 3  and the 7  resistors that are in series with one another to make a 10  resistor Combine the 1  and the 2  resistor that are in series with one another to make a 3  resistor Then re-draw the circuit It should look like this

23 The three resistors are hooked up in parallel with each other. 1/R t = 1/R 1 + 1/R 2 + 1/R 3 + … 1/R t =1/10 + 1/4 + 1/3 = 0.683 R t = 1.46  The circuit now looks like this I = V/R = 40/1.46 = I = 27.4 amps

24 #11 Combine the resistors hooked up in series with one another and re-draw the circuit It should look like this

25 The three resistors are hooked up in parallel with each other. 1/R t = 1/R 1 + 1/R 2 + 1/R 3 + … 1/R t =1/4 + 1/4 + 1/10 = 0.600 R t = 1.67  The circuit now looks like this I = V/R = 220/1.67 = I = 132 amps

26 #12 What type of circuit is this? Find the total resistance Find the total current The ___________ is the same for all devices in a series circuit Therefore I 3 = To find V 2 we need to know… V = IR so V 2 = 1.17(4) Series 12  1.17 amps Current 1.17 amps R 2 and I 2 4.68 V

27 #13 What type of circuit is this? Find the total resistance Find the total current The ___________ is the same for all lines in a parallel circuit Therefore V 3 = To find I 3 we need to know… I = V/R so I 3 = 120(2.5) Parallel 1.11  108 amps Voltage 120 V V 3 & R 3 48 amps

28 #14 BothIs this a series or a parallel circuit? Combine the resistors in series first. Then re-draw the circuit. It should look something like this

29 Now find the total resistance Do we need the total current? If so, what is it? How is resistor #5 hooked up? Those two resistors combine to form a resistor that is _____  How is that 5  resistor hooked up to the circuit? 2.4  No In series with #6 5  In parallel with the other combined resistors

30 More about Resistor #5 What is the same for all the lines in a parallel circuit? What is the voltage across the 5  resistor? What is the current through that 5  resistor? What is the current through resistor #5? Why? V = IR V = 22(3) Voltage 110 V 22 amps Series w/ #6 66 V

31 Let’s look at Resistor #4 How is resistor #4 hooked up? Those two resistors combine to form a resistor that is __  How is that 11  resistor hooked up to the circuit? What is the same for all the lines in a parallel circuit? What is the voltage across the 11  resistor? In series with #3 11  Parallel with the other combined resistors Voltage 110 V

32 More about Resistor #4 What is the current through that 11  resistor? What is the current through resistor #4? Why? 10 amps Series w/ #3

33 Now move on to the rest of the packet. We have the answers at all the problems. We have the solutions to #17 - #22. #23 is extra credit (it is really hard)


Download ppt "Combined Series and Parallel Circuits Objectives: 1. Calculate the equivalent resistance, current, and voltage of series and parallel circuits. 2. Calculate."

Similar presentations


Ads by Google