Download presentation

1
**DIVIDING RATIONAL NUMBERS**

LESSON 9

2
**Dividing Integers Positive ÷ Positive = Positive**

Positive ÷ Negative = Negative Negative ÷ Negative = Positive Negative ÷ Positive = Negative An odd number of Negatives divided together gives a negative result. An even number of Negatives divided together gives a positive result.

3
**EXAMPLES: Positive ÷ Positive Positive ÷ Negative Negative ÷ Negative**

(10) ÷ (+5) Positive ÷ Positive (+36) ÷ (-6) Positive ÷ Negative (-12) ÷ (-3) Negative ÷ Negative (-54) ÷ (+9) Negative ÷ Positive (-12) ÷ (-2) ÷ (-3) Odd number of Negatives (-60) ÷ (-2) ÷ (-3) ÷ (-2) Even number of Negatives

4
**EXAMPLES: Positive ÷ Positive = Positive Positive ÷ Negative**

(10) ÷ (+5) = 2 Positive ÷ Positive = Positive (+36) ÷ (-6) Positive ÷ Negative (-12) ÷ (-3) Negative ÷ Negative (-54) ÷ (+9) Negative ÷ Positive (-12) ÷ (-2) ÷ (-3) Odd number of Negatives (-60) ÷ (-2) ÷ (-3) ÷ (-2) Even number of Negatives

5
**EXAMPLES: Positive ÷ Positive Positive ÷ Negative = Negative**

(10) ÷ (+5) = 2 Positive ÷ Positive (+36) ÷ (-6) = -6 Positive ÷ Negative = Negative (-12) ÷ (-3) Negative ÷ Negative (-54) ÷ (+9) Negative ÷ Positive (-12) ÷ (-2) ÷ (-3) Odd number of Negatives (-60) ÷ (-2) ÷ (-3) ÷ (-2) Even number of Negatives

6
**EXAMPLES: Positive ÷ Positive Positive ÷ Negative Negative ÷ Negative**

(10) ÷ (+5) = 2 Positive ÷ Positive (+36) ÷ (-6) = -6 Positive ÷ Negative (-12) ÷ (-3) = 4 Negative ÷ Negative = Positive (-54) ÷ (+9) Negative ÷ Positive (-12) ÷ (-2) ÷ (-3) Odd number of Negatives (-60) ÷ (-2) ÷ (-3) ÷ (-2) Even number of Negatives

7
**EXAMPLES: Positive ÷ Positive Positive ÷ Negative Negative ÷ Negative**

(10) ÷ (+5) = 2 Positive ÷ Positive (+36) ÷ (-6) = -6 Positive ÷ Negative (-12) ÷ (-3) = 4 Negative ÷ Negative (-54) ÷ (+9) = - 6 Negative ÷ Positive = Negative (-12) ÷ (-2) ÷ (-3) Odd number of Negatives (-60) ÷ (-2) ÷ (-3) ÷ (-2) Even number of Negatives

8
**EXAMPLES: Positive ÷ Positive Positive ÷ Negative Negative ÷ Negative**

(10) ÷ (+5) = 2 Positive ÷ Positive (+36) ÷ (-6) = -6 Positive ÷ Negative (-12) ÷ (-3) = 4 Negative ÷ Negative (-54) ÷ (+9) = - 6 Negative ÷ Positive (-12) ÷ (-2) ÷ (-3) = - 2 Odd number of Negatives = Negative (-60) ÷ (-2) ÷ (-3) ÷ (-2) Even number of Negatives

9
**EXAMPLES: Positive ÷ Positive Positive ÷ Negative Negative ÷ Negative**

(10) ÷ (+5) = 2 Positive ÷ Positive (+36) ÷ (-6) = -6 Positive ÷ Negative (-12) ÷ (-3) = 4 Negative ÷ Negative (-54) ÷ (+9) = - 6 Negative ÷ Positive (-12) ÷ (-2) ÷ (-3) = - 2 Odd number of Negatives (-60) ÷ (-2) ÷ (-3) ÷ (-2) = 5 Even number of Negatives = Positive

10
**DIVIDING RATIONAL NUMBERS**

Change the fraction after the division sign to its Reciprocal and multiply the fractions by: Multiply the numerators of the fractions Multiply the denominators of the fractions Place the product of the numerators over the product of the denominators Simplify the Fraction

11
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷

12
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -3 5 9 4 x

13
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -3 5 9 4 x -27 20

14
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -3 5 9 4 x -27 20 7 20 -1

15
**EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 -2 -5 7 6 -3 5 9 4 -27 20 ÷ ÷ ÷**

-1

16
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -2 -5 7 6 -3 5 9 4 x x 14 30 -27 20 Notice the fraction is positive 7 20 -1

17
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -2 -5 7 6 -3 5 9 4 x x 14 30 -27 20 7 15 7 20 -1

18
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -2 -5 7 6 4 7 -13 8 -3 5 9 4 x x x 14 30 -27 20 Notice the negative stays in the numerator. Becomes Positive 7 15 7 20 -1

19
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -2 -5 7 6 4 7 -13 8 -3 5 9 4 x x x 14 30 -52 56 -27 20 7 15 7 20 -1

20
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -2 -5 7 6 4 7 -13 8 -3 5 9 4 x x x 14 30 -52 56 -27 20 7 15 -13 14 7 20 -1

21
**MORE EXAMPLES 3 5 3 5 -8 5 3 5 5 3 -8 5 2 3 -40 15 -8 3 ÷ ÷ -1 -2 x =**

Change Mixed to an Improper. -8 5 3 5 ÷ 5 3 -8 5 Reciprocal. x 2 3 -40 15 -8 3 -2 = =

Similar presentations

© 2023 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google