Download presentation
1
DIVIDING RATIONAL NUMBERS
LESSON 9
2
Dividing Integers Positive ÷ Positive = Positive
Positive ÷ Negative = Negative Negative ÷ Negative = Positive Negative ÷ Positive = Negative An odd number of Negatives divided together gives a negative result. An even number of Negatives divided together gives a positive result.
3
EXAMPLES: Positive ÷ Positive Positive ÷ Negative Negative ÷ Negative
(10) ÷ (+5) Positive ÷ Positive (+36) ÷ (-6) Positive ÷ Negative (-12) ÷ (-3) Negative ÷ Negative (-54) ÷ (+9) Negative ÷ Positive (-12) ÷ (-2) ÷ (-3) Odd number of Negatives (-60) ÷ (-2) ÷ (-3) ÷ (-2) Even number of Negatives
4
EXAMPLES: Positive ÷ Positive = Positive Positive ÷ Negative
(10) ÷ (+5) = 2 Positive ÷ Positive = Positive (+36) ÷ (-6) Positive ÷ Negative (-12) ÷ (-3) Negative ÷ Negative (-54) ÷ (+9) Negative ÷ Positive (-12) ÷ (-2) ÷ (-3) Odd number of Negatives (-60) ÷ (-2) ÷ (-3) ÷ (-2) Even number of Negatives
5
EXAMPLES: Positive ÷ Positive Positive ÷ Negative = Negative
(10) ÷ (+5) = 2 Positive ÷ Positive (+36) ÷ (-6) = -6 Positive ÷ Negative = Negative (-12) ÷ (-3) Negative ÷ Negative (-54) ÷ (+9) Negative ÷ Positive (-12) ÷ (-2) ÷ (-3) Odd number of Negatives (-60) ÷ (-2) ÷ (-3) ÷ (-2) Even number of Negatives
6
EXAMPLES: Positive ÷ Positive Positive ÷ Negative Negative ÷ Negative
(10) ÷ (+5) = 2 Positive ÷ Positive (+36) ÷ (-6) = -6 Positive ÷ Negative (-12) ÷ (-3) = 4 Negative ÷ Negative = Positive (-54) ÷ (+9) Negative ÷ Positive (-12) ÷ (-2) ÷ (-3) Odd number of Negatives (-60) ÷ (-2) ÷ (-3) ÷ (-2) Even number of Negatives
7
EXAMPLES: Positive ÷ Positive Positive ÷ Negative Negative ÷ Negative
(10) ÷ (+5) = 2 Positive ÷ Positive (+36) ÷ (-6) = -6 Positive ÷ Negative (-12) ÷ (-3) = 4 Negative ÷ Negative (-54) ÷ (+9) = - 6 Negative ÷ Positive = Negative (-12) ÷ (-2) ÷ (-3) Odd number of Negatives (-60) ÷ (-2) ÷ (-3) ÷ (-2) Even number of Negatives
8
EXAMPLES: Positive ÷ Positive Positive ÷ Negative Negative ÷ Negative
(10) ÷ (+5) = 2 Positive ÷ Positive (+36) ÷ (-6) = -6 Positive ÷ Negative (-12) ÷ (-3) = 4 Negative ÷ Negative (-54) ÷ (+9) = - 6 Negative ÷ Positive (-12) ÷ (-2) ÷ (-3) = - 2 Odd number of Negatives = Negative (-60) ÷ (-2) ÷ (-3) ÷ (-2) Even number of Negatives
9
EXAMPLES: Positive ÷ Positive Positive ÷ Negative Negative ÷ Negative
(10) ÷ (+5) = 2 Positive ÷ Positive (+36) ÷ (-6) = -6 Positive ÷ Negative (-12) ÷ (-3) = 4 Negative ÷ Negative (-54) ÷ (+9) = - 6 Negative ÷ Positive (-12) ÷ (-2) ÷ (-3) = - 2 Odd number of Negatives (-60) ÷ (-2) ÷ (-3) ÷ (-2) = 5 Even number of Negatives = Positive
10
DIVIDING RATIONAL NUMBERS
Change the fraction after the division sign to its Reciprocal and multiply the fractions by: Multiply the numerators of the fractions Multiply the denominators of the fractions Place the product of the numerators over the product of the denominators Simplify the Fraction
11
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷
12
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -3 5 9 4 x
13
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -3 5 9 4 x -27 20
14
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -3 5 9 4 x -27 20 7 20 -1
15
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 -2 -5 7 6 -3 5 9 4 -27 20 ÷ ÷ ÷
-1
16
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -2 -5 7 6 -3 5 9 4 x x 14 30 -27 20 Notice the fraction is positive 7 20 -1
17
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -2 -5 7 6 -3 5 9 4 x x 14 30 -27 20 7 15 7 20 -1
18
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -2 -5 7 6 4 7 -13 8 -3 5 9 4 x x x 14 30 -27 20 Notice the negative stays in the numerator. Becomes Positive 7 15 7 20 -1
19
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -2 -5 7 6 4 7 -13 8 -3 5 9 4 x x x 14 30 -52 56 -27 20 7 15 7 20 -1
20
EXAMPLE -3 5 4 9 -2 -5 6 7 -4 -7 -8 13 ÷ ÷ ÷ -2 -5 7 6 4 7 -13 8 -3 5 9 4 x x x 14 30 -52 56 -27 20 7 15 -13 14 7 20 -1
21
MORE EXAMPLES 3 5 3 5 -8 5 3 5 5 3 -8 5 2 3 -40 15 -8 3 ÷ ÷ -1 -2 x =
Change Mixed to an Improper. -8 5 3 5 ÷ 5 3 -8 5 Reciprocal. x 2 3 -40 15 -8 3 -2 = =
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.