Presentation is loading. Please wait.

Presentation is loading. Please wait.

DIMENSIONS, TOLERANCES, AND SURFACES

Similar presentations


Presentation on theme: "DIMENSIONS, TOLERANCES, AND SURFACES"— Presentation transcript:

1 DIMENSIONS, TOLERANCES, AND SURFACES
Dimensions, Tolerances, and Related Attributes Conventional Measuring Instruments and Gages Surfaces Measurement of Surfaces Effect of Manufacturing Processes ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

2 Dimensions and Tolerances
Factors that determine the performance of a manufactured product, other than mechanical and physical properties, include : Dimensions - linear or angular sizes of a component specified on the part drawing Tolerances - allowable variations from the specified part dimensions that are permitted in manufacturing ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

3 Dimensions (ANSI Y14.5M‑1982) A dimension is "a numerical value expressed in appropriate units of measure and indicated on a drawing and in other documents along with lines, symbols, and notes to define the size or geometric characteristic, or both, of a part or part feature" The dimension indicates the part size desired by the designer, if the part could be made with no errors or variations in the fabrication process ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

4 Tolerances (ANSI Y14.5M‑1982):
A tolerance is "the total amount by which a specific dimension is permitted to vary. The tolerance is the difference between the maximum and minimum limits" Variations occur in any manufacturing process, which are manifested as variations in part size Tolerances are used to define the limits of the allowed variation ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

5 Bilateral Tolerance Variation is permitted in both positive and negative directions from the nominal dimension Possible for a bilateral tolerance to be unbalanced Ex: , ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

6 Unilateral Tolerance Variation from the specified dimension is permitted in only one direction Either positive or negative, but not both ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

7 Limit Dimensions Permissible variation in a part feature size consists of the maximum and minimum dimensions allowed ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

8 Measurement Procedure in which an unknown quantity is compared to a known standard, using an accepted and consistent system of units Measurement provides a numerical value of the quantity of interest, within certain limits of accuracy and precision ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

9 Accuracy and Precision
Accuracy - the degree to which a measured value agrees with the true value of the quantity of interest A measurement procedure is accurate when it avoids systematic errors (positive or negative deviations that are consistent from one measurement to the next) Precision - the degree of repeatability in the measurement process Good precision means that random errors in the measurement procedure are minimized ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

10 Conventional Measuring Instruments and Gages
Precision gage blocks Measuring instruments for linear dimensions Comparative instruments Fixed gages Angular measurements ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

11 Precision Gage Blocks Standards against which other dimensional measuring instruments and gages are compared Usually square or rectangular blocks Surfaces are finished to be dimensionally accurate and parallel to  several millionths of an inch and are polished to a mirror finish Precision gage blocks are available in certain standard sizes or in sets, the latter containing a variety of different sized blocks ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

12 Measurement of Linear Dimensions
Measuring instruments are divided into two types: Graduated measuring devices include a set of markings on a linear or angular scale to which the object's feature of interest can be compared for measurement Nongraduated measuring devices have no scale and are used to compare dimensions or to transfer a dimension for measurement by a graduated device ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

13 Micrometer External micrometer, standard one‑inch size with digital readout (photo courtesy of L. S. Starret Co.) ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

14 Calipers Two sizes of outside calipers (photo courtesy of L. S. Starret Co.) ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

15 Mechanical Gages: Dial Indicators
Mechanical gages are designed to mechanically magnify the deviation to permit observation Most common instrument in this category is the dial indicator, which converts and amplifies the linear movement of a contact pointer into rotation of a dial The dial is graduated in small units such as 0.01 mm or inch Applications: measuring straightness, flatness, parallelism, squareness, roundness, and runout ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

16 Dial Indicator Front view shows dial and graduated face; back view shows cover plate removed (photo courtesy of Federal Products Co.) ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

17 Dial Indicator Setup to Measure Runout
As part is rotated about its center, variations in outside surface relative to center are indicated on the dial ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

18 Electronic Gages Family of measuring and gaging instruments based on transducers capable of converting a linear displacement into an electrical signal Electrical signal is amplified and transformed into suitable data format such as a digital readout Applications of electronic gages have grown rapidly in recent years, driven by advances in microprocessor technology, and are gradually replacing many of the conventional devices ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

19 GO/NO‑GO gages Minimum size for internal feature such as a hole
So-named because one gage limit allows the part to be inserted while the other limit does not GO limit - used to check the dimension at its maximum material condition Minimum size for internal feature such as a hole Maximum size for external feature such as an outside diameter NO‑GO limit - used to inspect the minimum material condition of the dimension in question ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

20 Snap Gage Gaging the diameter of a part (difference in height of GO and NO‑GO gage buttons is exaggerated) ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

21 Plug Gage Gaging of a hole diameter (difference in diameters of GO and NO-GO plugs is exaggerated) ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

22 Measurement of Angles Bevel protractor with Vernier scale (courtesy L. S. Starrett Co.) ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

23 Surfaces Nominal surface – designer’s intended surface contour of part, defined by lines in the engineering drawing Nominal surfaces appear as absolutely straight lines, ideal circles, round holes, and other edges and surfaces that are geometrically perfect Actual surfaces of a part are determined by the manufacturing processes used to make them Variety of processes result in wide variations in surface characteristics ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

24 Why Surfaces are Important
Aesthetic reasons Surfaces affect safety Friction and wear depend on surface characteristics Surfaces affect mechanical and physical properties Assembly of parts is affected by their surfaces Smooth surfaces make better electrical contacts ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

25 Surface Technology Defining the characteristics of a surface
Concerned with: Defining the characteristics of a surface Surface texture Surface integrity Relationship between manufacturing processes and characteristics of resulting surface ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

26 Metallic Part Surface Magnified cross section of a typical metallic part surface ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

27 Surface Texture It has roughness, waviness, and flaws
The topography and geometric features of the surface When highly magnified, the surface is anything but straight and smooth It has roughness, waviness, and flaws It also possesses a pattern and/or direction resulting from the mechanical process that produced it ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

28 Surface Texture Repetitive and/or random deviations from the nominal surface of an object ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

29 Four Elements of Surface Texture
Roughness - small, finely‑spaced deviations from nominal surface Determined by material characteristics and processes that formed the surface Waviness - deviations of much larger spacing Waviness deviations occur due to work deflection, vibration, tooling, and similar factors Roughness is superimposed on waviness ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

30 Four Elements of Surface Texture
Lay - predominant direction or pattern of the surface texture ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

31 Four Elements of Surface Texture
Flaws - irregularities that occur occasionally on the surface Includes cracks, scratches, inclusions, and similar defects in the surface Although some flaws relate to surface texture, they also affect surface integrity ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

32 Surface Roughness and Surface Finish
Surface roughness - a measurable characteristic based on roughness deviations Surface finish - a more subjective term denoting smoothness and general quality of a surface In popular usage, surface finish is often used as a synonym for surface roughness Both terms are within the scope of surface texture ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

33 Surface Roughness Average of vertical deviations from nominal surface over a specified surface length ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

34 Surface Roughness Equation
Arithmetic average (AA) based on absolute values of deviations, and is referred to as average roughness where Ra = average roughness; y = vertical deviation from nominal surface (absolute value); and Lm = specified distance over which the surface deviations are measured ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

35 Alternative Surface Roughness Equation
Approximation of previous equation is perhaps easier to comprehend where Ra has same meaning as above; yi = vertical deviations (absolute value) identified by subscript i; and n = number of deviations included in Lm ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

36 Cutoff Length A problem with the Ra computation is that waviness may get included To deal with this problem, a parameter called the cutoff length is used as a filter to separate waviness from roughness deviations Cutoff length is a sampling distance along the surface A sampling distance shorter than the waviness eliminates waviness deviations and only includes roughness deviations ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

37 Surface Roughness Specification
Surface texture symbols in engineering drawings: (a) the symbol, and (b) symbol with identification labels ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

38 Surface Integrity Surface texture alone does not completely describe a surface There may be metallurgical changes in the altered layer beneath the surface that can have a significant effect on a material's mechanical properties Surface integrity is the study and control of this subsurface layer and the changes in it that occur during processing which may influence the performance of the finished part or product ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

39 Surface Changes Caused by Processing
Surface changes are caused by the application of various forms of energy during processing Example: Mechanical energy is the most common form in manufacturing Processes include forging, extrusion, and machining Although its primary function is to change geometry of workpart, mechanical energy can also cause residual stresses, work hardening, and cracks in the surface layers ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

40 Energy Forms that Affect Surface Integrity
Mechanical energy Thermal energy Chemical energy Electrical energy ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

41 Surface Changes Caused by Mechanical Energy
Residual stresses in subsurface layer Example: bending of sheet metal Cracks ‑ microscopic and macroscopic Example: tearing of ductile metals in machining Voids or inclusions introduced mechanically Example: centerbursting in extrusion Hardness variations (e.g., work hardening) Example: strain hardening of new surface in machining ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

42 Surface Changes Caused by Thermal Energy
Metallurgical changes (recrystallization, grain size changes, phase changes at surface) Redeposited or resolidified material (e.g., welding or casting) Heat‑affected zone in welding (includes some of the metallurgical changes listed above) Hardness changes ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

43 Surface Changes by Caused Chemical Energy
Intergranular attack Chemical contamination Absorption of certain elements such as H and Cl in metal surface Corrosion, pitting, and etching Dissolving of microconstituents Alloy depletion and resulting hardness changes ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

44 Surface Changes Caused by Electrical Energy
Changes in conductivity and/or magnetism Craters resulting from short circuits during certain electrical processing techniques such as arc welding ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

45 Measurement of Surfaces
Two parameters of interest: Surface texture - geometry of the surface, commonly measured as surface roughness Surface roughness Surface integrity - deals with the material characteristics immediately beneath the surface and the changes to this subsurface that resulted from the processes that created it ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

46 Measurement of Surface Roughness
Three methods to measure surface roughness: Subjective comparison with standard test surfaces Fingernail test Stylus electronic instruments Optical techniques ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

47 Stylus Instruments Similar to the fingernail test, but more scientific
In these electronic devices, a cone‑shaped diamond stylus is traversed across test surface at slow speed As the stylus head is traversed horizontally, it also moves vertically to follow the surface deviations The vertical movement is converted into an electronic signal that can be displayed as Profile of the actual surface Average roughness value ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

48 Stylus Traversing Surface
Stylus head traverses horizontally across surface, while stylus moves vertically to follow surface profile ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

49 Tolerances and Manufacturing Processes
Some manufacturing processes are inherently more accurate than others Most machining processes are quite accurate, capable of tolerances = 0.05 mm ( in.) or better Sand castings are generally inaccurate, and tolerances of 10 to 20 times those used for machined parts must be specified ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version

50 Surfaces and Manufacturing Processes
Some processes are inherently capable of producing better surfaces than others In general, processing cost increases with improvement in surface finish because additional operations and more time are usually required to obtain increasingly better surfaces Processes noted for providing superior finishes include honing, lapping, polishing, and superfinishing ©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version


Download ppt "DIMENSIONS, TOLERANCES, AND SURFACES"

Similar presentations


Ads by Google