# ETE 204 - Digital Electronics Multiplexers, Decoders and Encoders [Lecture:10] Instructor: Sajib Roy Lecturer, ETE, ULAB.

## Presentation on theme: "ETE 204 - Digital Electronics Multiplexers, Decoders and Encoders [Lecture:10] Instructor: Sajib Roy Lecturer, ETE, ULAB."— Presentation transcript:

ETE 204 - Digital Electronics Multiplexers, Decoders and Encoders [Lecture:10] Instructor: Sajib Roy Lecturer, ETE, ULAB

Multiplexers ● A multiplexer has - 2 n data inputs - n control inputs - 1 output ● A multiplexer routes (or connects) the selected data input to the output. - The value of the control inputs determines the data input that is selected. Summer2012ETE 204 - Digital Electronics2

Multiplexers Data inputs Control input Z = A ′.I 0 + A.I 1 Summer2012ETE 204 - Digital Electronics3

Multiplexers ABZ 00I0I0 01I1I1 10I2I2 2121 2011I32011I3 m 0 = A'.B' MSBLSB m 1 = A'.B m 2 = A.B' m 3 = A.B Z = A ′.B'.I 0 + A'.B.I 1 + A.B'.I 2 + A.B.I 3 4Summer2012ETE 204 - Digital Electronics

Multiplexers ABCZ 000I0I0 m0m0 001I1I1 m1m1 010I2I2 m2m2 011I3I3 m3m3 100I4I4 m4m4 101I5I5 m5m5 2020 2 11111111 0I60I6 1I71I7 m6m7m6m7 MSBLSB Z = A ′.B'.C'.I 0 + A'.B'.C.I 1 + A'.B.C'.I 2 + A'.B.C.I 3 + A.B'.C'.I 0 + A.B'.C.I 1 + A'.B.C'.I 2 + A.B.C.I 3 5Summer2012ETE 204 - Digital Electronics

Multiplexers 2020 2 n-1 Z =  m i.I i 6Summer2012ETE 204 - Digital Electronics

Decoders ● A decoder has - n inputs - 2 n outputs ● A decoder selects one of 2 n outputs by decoding the binary value on the n inputs. ● The decoder generates all of the minterms of the n input variables. - Exactly one output will be active for each combination of the inputs. What does “active” mean? 7Summer2012ETE 204 - Digital Electronics

Decoders Z0Z0 A 2-to-4 Decoder msb B Z1Z2Z3Z1Z2Z3 Z i = m i active-high output ABZ0Z0 Z1Z1 Z2Z2 Z3Z3 001000 m0m0 0 10100 m1m1 100010 m2m2 110001 m3m3 8Summer2012ETE 204 - Digital Electronics

Decoders Z0Z0 A 2-to-4 Decoder msb B Z1Z2Z3Z1Z2Z3 Z i = (m i )' = M i active-low output ABZ0Z0 Z1Z1 Z2Z2 Z3Z3 000111 M0M0 0 11011 M1M1 101101 M2M2 111110 M3M3 9Summer2012ETE 204 - Digital Electronics

Decoders msb 3-to-8 Decoder 10Summer2012ETE 204 - Digital Electronics

Decoder with Enable ABAB En active-high enable 2-to-4 Decoder with Enable Z0Z1Z2Z3Z0Z1Z2Z3 EnABZ0Z0 Z1Z1 Z2Z2 Z3Z3 1001000 1010100 enabled 1 100010 1110001 disabled 0xx0000 11Summer2012ETE 204 - Digital Electronics

Decoder with Enable ABAB En active-low enable 2-to-4 Decoder with Enable Z0Z1Z2Z3Z0Z1Z2Z3 EnABZ0Z0 Z1Z1 Z2Z2 Z3Z3 0001000 0010100 enabled 0 100010 0110001 disabled 1xx0000 12Summer2012ETE 204 - Digital Electronics

Encoders ● An encoder has - 2 n inputs - n outputs ● Outputs the binary value of the selected (or active) input. ● Performs the inverse operation of a decoder. ● Issues - What if more than one input is active? - What if no inputs are active? 13Summer2012ETE 204 - Digital Electronics

Encoders Y0Y1Y2Y3Y0Y1Y2Y3 A 4-to-2 Encoder B Y0Y0 Y1Y1 Y2Y2 Y3Y3 AB 100000 010001 001010 000111 14Summer2012ETE 204 - Digital Electronics

Priority Encoders ● If more than one input is active, the higher-order input has priority over the lower-order input. - The higher value is encoded on the output ● A valid indicator, d, is included to indicate whether or not the output is valid. - Output is invalid when no inputs are active ● d = 0 - Output is valid when at least one input is active ● d = 1 Why is the valid indicator needed? 15Summer2012ETE 204 - Digital Electronics

Priority Encoders msb 8-to-3 Priority Encoder Valid bit 16Summer2012ETE 204 - Digital Electronics

Using a 2 n -input Multiplexer ● Use a 2 n -input multiplexer to realize a logic circuit for a function with 2 n minterms. - n = # of control inputs = # of variables in the function ● Each minterm of the function can be mapped to a data input of the multiplexer. ● For each row in the truth table, for the function, where the output is 1, set the corresponding data input of the multiplexer to 1. - That is, for each minterm in the minterm expansion of the function, set the corresponding input of the multiplexer to 1. ● Set the remaining inputs of the multiplexer to 0. 17Summer2012ETE 204 - Digital Electronics

Using an 2 n -input Mux Example: Using an 8-to-1 multiplexer, design a logic circuit to realize the following Boolean function F(A,B,C) =  m(2, 3, 5, 6, 7) 18Summer2012ETE 204 - Digital Electronics

Using an 2 n -input Mux Example: Using an 8-to-1 multiplexer, design a logic circuit to realize the following Boolean function F(A,B,C) =  m(1, 2, 4) 19Summer2012ETE 204 - Digital Electronics

Using an 2 (n-1) -input Multiplexer ● Use a 2 (n-1) -input multiplexer to realize a logic circuit for a function with 2 n minterms. - n - 1 = # of control inputs; n = # of variables in function ● Group the rows of the truth table, for the function, into 2 (n-1) pairs of rows. - Each pair of rows represents a product term of (n - 1) variables. - Each pair of rows is mapped to one data input of the mux. ● Determine the logical function of each pair of rows in terms of the remaining variable. - If the remaining variable, for example, is x, then the possible values are x, x', 0, and 1. 20 Summer2012ETE 204 - Digital Electronics

Using an 2 (n-1) -input Mux Example: F(x,y,z) =  m(1, 2, 6, 7) 22Summer2012ETE 204 - Digital Electronics

Using an 2 (n-1) -input Mux Example: F(A,B,C,D) =  m(1,3,4,11,12-15) 22Summer2012ETE 204 - Digital Electronics

Using a 2 (n-2) -input Mux A similar design approach can be implemented using a 2 (n-2) -input multiplexer. 23Summer2012ETE 204 - Digital Electronics

Circuit Design using Decoders 24Summer2012ETE 204 - Digital Electronics

Using an n-output Decoder ● Use an n-output decoder to realize a logic circuit for a function with n minterms. ● Each minterm of the function can be mapped to an output of the decoder. ● For each row in the truth table, for the function, where the output is 1, sum (or “OR”) the corresponding outputs of the decoder. - That is, for each minterm in the minterm expansion of the function, OR the corresponding outputs of the decoder. ● Leave remaining outputs of the decoder unconnected. 25Summer2012ETE 204 - Digital Electronics

Using an n-output Decoder Example: Using a 3-to-8 decoder, design a logic circuit to realize the following Boolean function F(A,B,C) =  m(2, 3, 5, 6, 7) 26Summer2012ETE 204 - Digital Electronics

Using an n-output Decoder Example: Using two 2-to-4 decoders, design a logic circuit to realize the following Boolean function F(A,B,C) =  m(0, 1, 4, 6, 7) 27Summer2012ETE 204 - Digital Electronics

Hierarchical Design ● Several issues arise when designing large multiplexers and decoders (as 2-level circuits). - Number of logic gates gets prohibitively large - Number of inputs to each logic gate (i.e. fan-in) gets prohibitively large ● Instead, design both hierarchically - Use smaller elements as building blocks - Interconnect building blocks in a multi-tier structure 28Summer2012ETE 204 - Digital Electronics

Hierarchical Design Exercise: Design an 8-to-1 multiplexer using 4-to-1 and 2-to-1 multiplexers only. 29Summer2012ETE 204 - Digital Electronics

Hierarchical Design Exercise: Design a 16-to-1 multiplexer using 4-to-1 multiplexers only. 30Summer2012ETE 204 - Digital Electronics

Hierarchical Design Exercise: Design a 4-to-16 decoder using 2-to-4 decoders only. 31Summer2012ETE 204 - Digital Electronics

Questions? 32Summer2012ETE 204 - Digital Electronics

Download ppt "ETE 204 - Digital Electronics Multiplexers, Decoders and Encoders [Lecture:10] Instructor: Sajib Roy Lecturer, ETE, ULAB."

Similar presentations