Download presentation

Presentation is loading. Please wait.

Published byAlexandra Kirkpatrick Modified over 2 years ago

1
PLANCK LIMPATTO SULLA COSMOLOGIA ALESSANDRO MELCHIORRI

2

3
Paolo de Bernardis (Roma1) Erminia Calabrese (Roma1) (PhD) Silvia Masi (Roma1) Alessandro Melchiorri (Roma1) Luca Pagano (Roma1) (PhD) Francesco Piacentini Francesco De Bernardis (PhD) Silvia Galli (PhD) Giulia Gubitosi (PhD) Matteo Martinelli (PhD) Stefania Pandolfi (PhD) Marcella Veneziani (ass. ric). Laureandi Magistrale: Maria Archidiacono Paolo Fermani Elena Giusarma Andrea Maselli Eloisa Menegoni Marco Ruzza (Analisi Dati e Implicazioni Cosmologiche) Grazia De Troia Marina Migliaccio Paolo Natoli Nicola Vittorio Giancarlo de Gasperis ….e altro …in collaborazione con

4

5

6
Current status of CMB observations

7
Temperature Angular spectrum varies with tot b c h n s, … We can measure cosmological parameters with CMB !

8
How to get a bound on a cosmological parameter DATA Fiducial cosmological model: ( Ω b h 2, Ω m h 2, h, n s, τ, Σ m ν ) PARAMETER ESTIMATES

9
Dunkley et al., 2008

10
Blu: Dati attuali Rosso: Planck

11
F. De Bernardis, E. Calabrese, P. de Bernardis, S. Masi, AM 2009

12
Next experiment for measuring neutrino mass: KATRIN Current limits from laboratory:

13
Likelihood G/G0 Constraints on Newtons constant S. Galli, A. Melchiorri, G. Smoot, O. Zahn, arxiv:

14

15

16
When the luminous source is the CMB, the lensing effect essentially re-maps the temperature field according to : unlensed lensed CMB Temperature Lensing

17
We phenomenologically uncoupled weak lensing from primary anisotropies by introducing a new parameter A L that scales the lensing potential such as : A L =0 corresponds to a theory ignoring lensing A L =1 corresponds to the standard weak lensing scenario. Analysis Method A L can also be seen like a fudge parameter controlling the amount of smoothing of the peaks. In fact in this figure we can see that the curves with increasingly smoothed peak structures correspond to analysis with increasingly values of A L (0, 1, 3, 6, 9).

18
Planck Letting the lensing parameter vary, the obtained constraints are: Future constraints HFI 143 GHz Channel: f sky =1 θ=7 NoiseVar=3,4·10 -4 μK 2 fiducial model with ACBAR+WMAP3 best fit parameters E. Calabrese, A. Slosar, A. Melchiorri, G. Smoot, O. Zahn, PRD, 2008

19
Calabrese, Martinelli, AM, Pagano, 2009

20
CMB POLARIZATION

21

22

23

24

25
Fluctuation and GW generator Fluctuation amplifier But GW dissipator… Hot Dense Smooth Cool Rarefied Clumpy

26

27
On this map we see horizons at z=1000….

28

29
SCALAR + TENSOR = We measure the sum of the two spectra. If GW are present this lowers the amplitude of the peak. Degeneracy with other Parameters.

30

31
CMB Polarization Polarization is described by Stokes-Q and -U These are coordinate dependent The two dimensional field is described by a gradient of a scalar (E) or curl of a pseudo-scale (B). Grad (or E) modes Curl (or B) modes (density fluctuations have no handness, so no contribution to B-modes). B-Modes=Gravity Waves !!

32

33
Several inflationary models predict a sizable GW background (r>0.01) if n<1. Pagano, Cooray, Melchiorri And Kamionkowsky, JCAP 08.

34

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google