Download presentation

Presentation is loading. Please wait.

Published byAlexandra Kirkpatrick Modified over 4 years ago

1
PLANCK L’IMPATTO SULLA COSMOLOGIA ALESSANDRO MELCHIORRI

3
**PLANCK@ROMA1 PLANCK@ROMA2 (Analisi Dati e Implicazioni Cosmologiche)**

Paolo de Bernardis (Roma1) Erminia Calabrese (Roma1) (PhD) Silvia Masi (Roma1) Alessandro Melchiorri (Roma1) Luca Pagano (Roma1) (PhD) Francesco Piacentini Francesco De Bernardis (PhD) Silvia Galli (PhD) Giulia Gubitosi (PhD) Matteo Martinelli (PhD) Stefania Pandolfi (PhD) Marcella Veneziani (ass. ric). Laureandi Magistrale: Maria Archidiacono Paolo Fermani Elena Giusarma Andrea Maselli Eloisa Menegoni Marco Ruzza …in collaborazione con Grazia De Troia Marina Migliaccio Paolo Natoli Nicola Vittorio Giancarlo de Gasperis ….e altro

6
**Current status of CMB observations**

7
**We can measure cosmological parameters with CMB !**

Wtot , Wb , Wc, L, t, h, ns, … Temperature Angular spectrum varies with

8
**How to get a bound on a cosmological parameter**

Fiducial cosmological model: (Ωbh2 , Ωmh2 , h , ns , τ, Σmν ) DATA PARAMETER ESTIMATES

9
Dunkley et al., 2008

10
Blu: Dati attuali Rosso: Planck

11
**F. De Bernardis, E. Calabrese, P. de Bernardis, S. Masi, AM 2009**

12
**Next experiment for measuring neutrino mass: KATRIN**

Current limits from laboratory:

13
**Constraints on Newton’s constant**

Likelihood G/G0 S. Galli, A. Melchiorri, G. Smoot, O. Zahn, arxiv:

16
**CMB Temperature Lensing**

unlensed lensed When the luminous source is the CMB, the lensing effect essentially re-maps the temperature field according to :

17
Analysis Method We phenomenologically uncoupled weak lensing from primary anisotropies by introducing a new parameter AL that scales the lensing potential such as : AL=0 corresponds to a theory ignoring lensing AL=1 corresponds to the standard weak lensing scenario. AL can also be seen like a fudge parameter controlling the amount of smoothing of the peaks. In fact in this figure we can see that the curves with increasingly smoothed peak structures correspond to analysis with increasingly values of AL (0, 1, 3, 6, 9).

18
**Letting the lensing parameter vary, the obtained constraints are:**

Future constraints Planck HFI 143 GHz Channel: fsky =1 θ=7’ NoiseVar=3,4·10-4 μK2 fiducial model with ACBAR+WMAP3 best fit parameters Letting the lensing parameter vary, the obtained constraints are: E. Calabrese, A. Slosar, A. Melchiorri, G. Smoot, O. Zahn, PRD, 2008

19
**Calabrese, Martinelli, AM, Pagano, 2009**

20
CMB POLARIZATION

25
**Fluctuation and GW generator Fluctuation amplifier But GW dissipator…**

Hot Dense Smooth Cool Rarefied Clumpy

27
**On this map we see 100000 horizons at z=1000….**

29
SCALAR + TENSOR = We measure the sum of the two spectra. If GW are present this lowers the amplitude of the peak. Degeneracy with other Parameters.

31
**CMB Polarization Polarization is described by Stokes-Q and -U**

These are coordinate dependent The two dimensional field is described by a gradient of a scalar (E) or curl of a pseudo-scale (B). Grad (or E) modes Curl (or B) modes (density fluctuations have no handness, so no contribution to B-modes). B-Modes=Gravity Waves !!

33
Several inflationary models predict a sizable GW background (r>0.01) if n<1. Pagano, Cooray, Melchiorri And Kamionkowsky, JCAP 08.

Similar presentations

OK

Observational constraints on inflationary models Zong-Kuan Guo (ITP, CAS) CosPA2011 (Peking Uni) October 31, 2011.

Observational constraints on inflationary models Zong-Kuan Guo (ITP, CAS) CosPA2011 (Peking Uni) October 31, 2011.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google