Presentation is loading. Please wait.

Presentation is loading. Please wait.

Anuj Parikh Universitat Politècnica de Catalunya The search for “important” nuclear reactions in astrophysical environments.

Similar presentations


Presentation on theme: "Anuj Parikh Universitat Politècnica de Catalunya The search for “important” nuclear reactions in astrophysical environments."— Presentation transcript:

1 Anuj Parikh Universitat Politècnica de Catalunya The search for “important” nuclear reactions in astrophysical environments

2 Nova Cygni 1992 (d = 10 000 ly) ~ 10 11 km HST Nuclear physics for nova observables José et al. (2007) Vanlandingham et al. (1997) Nova V693 CrA 1981

3 Nova Cygni 1992 (d = 10 000 ly) ~ 10 11 km HST Nuclear physics for nova observables Vanlandingham et al. (1997) Nova V693 CrA 1981

4 Swift (NASA) Nuclear physics for XRB observables Sala, Haberl, José, AP, and Pietsch (2009) José, Moreno, AP and Iliadis (2010) burst 1 burst 5 DIFFERENT XRB NUCLEOSYNTHESIS ↔ DIFFERENT XRB LIGHTCURVES c

5 Swift (NASA) Nuclear physics for XRB observables Woosley et al. (2004) Sala, Haberl, José, AP, and Pietsch (2009) DIFFERENT XRB NUCLEOSYNTHESIS ↔ DIFFERENT XRB LIGHTCURVES c

6 Post-processing networks 142 isotopes (H – Ca) 1265 nuclear processes (Iliadis et al. 2002) 606 isotopes (H – Xe) 3551 nuclear processes (Parikh et al. 2008) most key reactions on an experimental basismostly theoretical rates above A = 40 José et al. (2007) http://www.nscl.msu.edu/~schatz/ Nova nucleosynthesis XRB nucleosynthesis

7 ONe nova sensitivity study (Iliadis et al. (2002)) : ■ T-ρ-t profiles from 5 different hydrodynamic nova simulations ■ Post-processing network: 142 isotopes (H – Ca) ■ Variation of each of 175 reaction rates within errors

8 Fox et al. 2004,2005; Chafa et al. 2005,2007 Davids et al. 2003, Bishop et al. 2003, D’Auria et al. 2004 Rowland et al. 2004, Hale et al. 2004 Parete-Koon et al. 2003 Hale et al. 2002 Bardayan et al. 2001, 2005; Graulich et al. 2001, de Sereville 2003, 2005, 2007; Kozub et al. 2005, Chae et al. 2006, Murphy et al. 2009 Visser et al. 2007, Zegers et al. 2008, Lotay et al. 2008 Ruiz et al. 2006, Lotay et al. 2009 Jenkins et al. 2006, Ma et al. 2007, Wrede et al. 2007, 2009; Lewis et al. 2005, Deibel et al. 2008, Lotay et al. 2009 Parikh et al. 2009 ONe nova sensitivity study (Iliadis et al. (2002)) : ■ T-ρ-t profiles from 5 different hydrodynamic nova simulations ■ Post-processing network: 142 isotopes (H – Ca) ■ Variation of each of 175 reaction rates within errors

9 Fox et al. 2004,2005; Chafa et al. 2005,2007 Davids et al. 2003, Bishop et al. 2003, D’Auria et al. 2004 Rowland et al. 2004, Hale et al. 2004 Parete-Koon et al. 2003 Hale et al. 2002 Bardayan et al. 2001, 2005; Graulich et al. 2001, de Sereville 2003, 2005, 2007; Kozub et al. 2005, Chae et al. 2006, Murphy et al. 2009 Visser et al. 2007, Zegers et al. 2008, Lotay et al. 2008 Ruiz et al. 2006, Lotay et al. 2009 Jenkins et al. 2006, Ma et al. 2007, Wrede et al. 2007, 2009; Lewis et al. 2005, Deibel et al. 2008, Lotay et al. 2009 Parikh et al. 2009 ONe nova sensitivity study (Iliadis et al. (2002)) : ■ T-ρ-t profiles from 5 different hydrodynamic nova simulations ■ Post-processing network: 142 isotopes (H – Ca) ■ Variation of each of 175 reaction rates within errors José et al. (2007)

10 Casanova et al. (2010) t = 214 s t = 498 s t = 234 s t = 279 s Convection via 12 C abundance (2D model) ~500 km 800 km

11 Measurements desired to constrain XRB nucleosynthesis (AP et al. 2008, 2009) -individual variation of rates -MC treatment +to better precision: 31 Cl (50 keV) 45 Cr (503 keV) 61 Ga (53 keV) 71 Br (568 keV) 83 Nb (315 keV) 86 Mo (438 keV)

12 Impact of rate: 65 As(p, γ ) 66 Se (Q = 2030 ± 424# keV) AP et al. 2008, 2009

13 Impact of ΔQ: 64 Ge(p, γ ) 65 As (Q = −80 ± 300# keV) AP et al. 2008, 2009

14 Amthor et al. (2006) Other XRB sensitivity studies: Roberts et al. (2010) 46 Cr(p,γ) 47 Mn Cyburt et al. (2010) Woosley et al. (2004)

15 Resonant component of the thermonuclear rate: Measure directly or indirectly E R CM and (  ) (masses, spins, partial widths, lifetimes)

16 Nova explosions: 25 Al(p,γ) 26 Si 25 Al (5/2 +, t 1/2 = 7.2 s) Peplowski et al. (2009): 25 Al(d,n) 26 Si* → p+ 26 Al @ FSU 25 Al: 2x10 4 pps 5914 keV is 3 + (l=0) Γ p = 2.9(10) eV Bardayan et al. (2006): 28 Si(p,t) 26 Si, angular distributions @ ORNL 5914 is 2 + or 3 + Γ p for 5672, 5946 (based on mirror [Ili96]) Chen et al. (2008): 27 Si(p,d) 26 Si, angular distributions @NSCL 27 Si(t 1/2 = 4.2 s),10 7 pps 25 Al(p,p), spins, widths @CRIB-RIKEN 25 Al: <10 6 pps Direct: hard… DRAGON, need >10 7 pps [S922 – Chen, Ruiz++, Stage 1] TUDA, need >10 5 pps [S923 – Chen, Buchmann++, Stage 1]

17 Nova explosions: 26 Al( 3 He,t) 26 Si*(p) 25 Al for 25 Al(p,γ) 26 Si 28 Si( 3 He,a) 27 Si*(p) 26 Al Deibel et al. (2009) S1071: Deibel et al. – for 26 Al( 3 He,t) 26 Si (nova) S1171: AP et al. – for 26 Al( 3 He,d) 27 Si (AGBs) S1200: Buchmann, Ruiz, Couture et al. – for 26 Al(n,p) and (n,a) (CCSN) → Stage 2: 24 shifts approved @ ISAC NEED AN 26 AL (t 1/2 = 717 000 y) TARGET!

18 Nova explosions: 30 P(p,γ) 31 S 30 P+p Q = 6133 31 S 30 P (1 +, t 1/2 = 2.5 min) Wrede et al. (2007, 2009): 31 P( 3 He,t) 31 S* → p + 30 P @ Yale energies, new states, Γ p /Γ for E x > 6719 keV Jenkins et al. (2005, 2006): 12 C( 20 Ne,nγ) 31 S @ ANL-Gammasphere energies, spins (high-spin states), new state Ma et al. (2007): 32 S(p,d) 31 S, angular distributions @ ORNL energies, spins Direct: hard… For DRAGON, need >10 6 pps 30 P [S1108 – Wrede, Hutcheon et al., Stage 1] +more tomorrow from D. Irvine

19 30 P+p Q = 6133 T < 0.4 GK 31 S 3 new states! 31 P( 3 He,t) 31 S E 3He = 20 MeV 1.5° Yale Split-Pole ΔE ~ 25 keV 5 d @ 50 nA Wrede et al. (2007) Using 31 P( 3 He,t) 31 S for 30 P(p,  ) 31 S

20 30 P+p Q = 6133 T < 0.4 GK 31 S 3 new states! Using 31 P( 3 He,t) 31 S for 30 P(p,  ) 31 S 31 P( 3 He,t) 31 S E 3He = 25 MeV 10° MLL Q3D 12 h @ 650 nA ΔE = 10 keV PRELIMINARY!!! AP et al. 31 P( 3 He,t) 31 S E 3He = 20 MeV 1.5° Yale Split-Pole ΔE = 25 keV 5 d @ 50 nA counts E triton

21 30 P+p Q = 6133 31 S Using 31 P( 3 He,t) 31 S for 30 P(p,  ) 31 S 31 P( 3 He,t) 31 S E 3He = 25 MeV 10° MLL Q3D 12 h @ 650 nA ΔE = 10 keV PRELIMINARY!!! AP et al. 31 P( 3 He,t) 31 S E 3He = 20 MeV 1.5° Yale Split-Pole ΔE = 25 keV 5 d @ 50 nA 5/2– 1/2+ CM (deg) dσ/dΩ (μb/sr) counts E triton

22 +to better precision: 31 Cl (50 keV) 45 Cr (503 keV) 61 Ga (53 keV) 71 Br (568 keV) 83 Nb (315 keV) 86 Mo (438 keV) XRBs: desired measurements Parikh et al. 2008. 2009

23 +to better precision: 31 Cl (50 keV) 45 Cr (503 keV) 61 Ga (53 keV) 71 Br (568 keV) 83 Nb (315 keV) 86 Mo (438 keV) XRBs: selected recent activity masses from JYFLTRAP (2006 – 9) t 1/2 or mass from MSU (Bazin+08, Rogers+09 dedicated proposals for mass or structure (GSI, TRIUMF, ANL) 65 As, 66 Se, 62 Ge, 58 Zn Parikh et al. 2008. 2009 30 S(a,p) 33 Cl -inverse (ANL) -normal (RIKEN) 30 S, 10 4 pps, 1.2 s 33 Cl, 2.5 s S1194 (TITAN) – AP, Ringle, Hager, Stage 1, 100 pps

24 XRBs: 15 O(a,γ) 19 Ne [more tomorrow from B. Davids] → important for breakout in XRBs (along with 14 O(a,p) 17 F), but not nova explosions → E x ( 19 Ne) = 4033 keV (E r = 504 keV, 3/2 + ) dominates rate for T < 0.6 GK comparing lower limits for rate e.g. for 4033: Γ a /Γ = 5x10 -6 vs 8x10 -5 [Fisker et al. 2007] Tan et al. (2007): 19 F( 3 He,t) 19 Ne*(a) 15 O @ Notre Dame Γ a /Γ = 2.9(21)x10 -4 [<4.3x10 -4 Davids+03] [<6x10 -4 Rehm+03] Direct…hard… For DRAGON, need >10 10 pps [S813 – Buchmann et al., Stage 1] For TIGRESS-SHARC, need >10 6 pps [S900 – Fulton, Diget et al., Stage 1, 15 O( 6 Li,d)]

25 XRBs: 15 O(a,γ) 19 Ne [more tomorrow from B. Davids] → important for breakout in XRBs (along with 14 O(a,p) 17 F), but not nova explosions → E x ( 19 Ne) = 4033 keV (E r = 504 keV, 3/2 + ) dominates rate for T < 0.6 GK Tan et al. (2007): 19 F( 3 He,t) 19 Ne*(a) 15 O @ Notre Dame Γ a /Γ = 2.9(21)x10 -4 [<4.3x10 -4 Davids+03] [<6x10 -4 Rehm+03] Tan et al. 2007 4.03 4.20 4.14 4.38 preliminary Another measurement? at MLL: 2 – 3 weeks of beamtime (Chen, AP, Fulton, Laird, Bishop et al.) counts E triton

26 XRBs: 57 Cu(p,γ) 58 Zn → ‘important’ reaction from the XRB sensitivity study (AP et al. 2008) → no information available on 58 Zn above S p = 2280 keV → idea: in-flight gamma-ray spectroscopy of 58 Zn with AGATA @ GSI LOI (Domingo-Pardo, Galavíz, AP et al.) for AGATA@GSI (7 days) SM-Calculation, Fisker et al. 2001 Advanced GAmma Tracking Array 60 triple clusters of Ge detectors (60x3x36 total segments) 50% eff., E res < 0.5%

27 New sensitivity studies: mergers of compact objects WD-WD: mechanism for type Ia SNe? 56 Ni production? (Raskin et al. 2010, Pakmor et al. 2010) WD-NS: most previous studies have only focused on dynamics (García- Berro et al. 2010) NS-NS: progenitors for GRBs? R-process sites? (Arnould 2007) Raskin et al. (2010)

28 New sensitivity studies: mergers of compact objects R. Longland (UPC) Tracer particles from SPH models (Loren et al. 2010, Guerrero et al. 2004)

29 Summary of events during the closure of Spanish airspace (Dec. 3 – 4): Friday, mid-afternoon: air-traffic controllers all over Spain start a covert strike. Friday, early evening: chaos in Spanish airports, thousands of travellers stranded. Friday, late evening: the Spanish government sends the Army to take control of the airports Saturday, very early morning: Spanish government declares ’state of alarm’ Saturday, morning: still chaos at the airports, no flights are leaving or arriving. FC Barcelona calls periodically to ask if they’ll be able to catch their flight; apparently, they keep being told that they will. Saturday, midday: FC Barcelona contact the RFEF (Spanish Football Federation) and are told that if they can’t fly, the Osasuna match will be played on Sunday; the team makes train and bus arrangements accordingly. Saturday, early afternoon: Osasuna declare that they haven’t been told the match is suspended, and that they will play on the evening or force Barça to forfeit the game. Saturday, after lunch: the RFEF calls Barça and tells them that they have to get to Pamplona and play in the evening. Saturday, 4 PM: Barça leaves the Camp Nou to catch a high-speed train to Zaragoza, where they’ll take a coach to Pamplona; estimated travel time: 4 hours and a half. Saturday, 8 PM: Barça arrives into the Reyno de Navarra stadium. Saturday, 8:45 PM: kickoff! (only 45 minutes after the original schedule Saturday evening: Barça win 3 - 0


Download ppt "Anuj Parikh Universitat Politècnica de Catalunya The search for “important” nuclear reactions in astrophysical environments."

Similar presentations


Ads by Google