Presentation is loading. Please wait.

Presentation is loading. Please wait.

Thermal Physics Thermal physics is the study of Thermal physics is the study of TemperatureTemperature HeatHeat How these affect matterHow these affect.

Similar presentations


Presentation on theme: "Thermal Physics Thermal physics is the study of Thermal physics is the study of TemperatureTemperature HeatHeat How these affect matterHow these affect."— Presentation transcript:

1 Thermal Physics Thermal physics is the study of Thermal physics is the study of TemperatureTemperature HeatHeat How these affect matterHow these affect matter

2 Thermal Physics, cont Concerned with the concepts of energy transfers between a system and its environment and the resulting temperature variations Concerned with the concepts of energy transfers between a system and its environment and the resulting temperature variations Historically, the development of thermodynamics paralleled the development of atomic theory Historically, the development of thermodynamics paralleled the development of atomic theory Concerns itself with the physical and chemical transformations of matter in all of its forms: solid, liquid, and gas Concerns itself with the physical and chemical transformations of matter in all of its forms: solid, liquid, and gas

3 Zeroth Law of Thermodynamics If objects A and B are separately in thermal equilibrium with a third object, C, then A and B are in thermal equilibrium with each other. If objects A and B are separately in thermal equilibrium with a third object, C, then A and B are in thermal equilibrium with each other. Allows a definition of temperature Allows a definition of temperature

4 Temperature from the Zeroth Law Two objects in thermal equilibrium with each other are at the same temperature Two objects in thermal equilibrium with each other are at the same temperature Temperature is the property that determines whether or not an object is in thermal equilibrium with other objects Temperature is the property that determines whether or not an object is in thermal equilibrium with other objects

5 Thermometers Used to measure the temperature of an object or a system Used to measure the temperature of an object or a system Make use of physical properties that change with temperature Make use of physical properties that change with temperature Many physical properties can be used Many physical properties can be used volume of a liquidvolume of a liquid length of a solidlength of a solid pressure of a gas held at constant volumepressure of a gas held at constant volume volume of a gas held at constant pressurevolume of a gas held at constant pressure electric resistance of a conductorelectric resistance of a conductor color of a very hot objectcolor of a very hot object

6 Thermometers, cont A mercury thermometer is an example of a common thermometer A mercury thermometer is an example of a common thermometer The level of the mercury rises due to thermal expansion The level of the mercury rises due to thermal expansion Temperature can be defined by the height of the mercury column Temperature can be defined by the height of the mercury column

7 Temperature Scales Thermometers can be calibrated by placing them in thermal contact with an environment that remains at constant temperature Thermometers can be calibrated by placing them in thermal contact with an environment that remains at constant temperature Environment could be mixture of ice and water in thermal equilibriumEnvironment could be mixture of ice and water in thermal equilibrium Also commonly used is water and steam in thermal equilibriumAlso commonly used is water and steam in thermal equilibrium

8 Celsius Scale Temperature of an ice-water mixture is defined as 0º C Temperature of an ice-water mixture is defined as 0º C This is the freezing point of waterThis is the freezing point of water Temperature of a water-steam mixture is defined as 100º C Temperature of a water-steam mixture is defined as 100º C This is the boiling point of waterThis is the boiling point of water Distance between these points is divided into 100 segments or degrees Distance between these points is divided into 100 segments or degrees

9 Gas Thermometer Temperature readings are nearly independent of the gas Temperature readings are nearly independent of the gas Pressure varies with temperature when maintaining a constant volume Pressure varies with temperature when maintaining a constant volume

10 Kelvin Scale When the pressure of a gas goes to zero, its temperature is –273.15º C When the pressure of a gas goes to zero, its temperature is –273.15º C This temperature is called absolute zero This temperature is called absolute zero This is the zero point of the Kelvin scale This is the zero point of the Kelvin scale –273.15º C = 0 K–273.15º C = 0 K To convert: T C = T K – 273.15 To convert: T C = T K – 273.15 The size of the degree in the Kelvin scale is the same as the size of a Celsius degreeThe size of the degree in the Kelvin scale is the same as the size of a Celsius degree

11 Pressure-Temperature Graph All gases extrapolate to the same temperature at zero pressure All gases extrapolate to the same temperature at zero pressure This temperature is absolute zero This temperature is absolute zero

12 Modern Definition of Kelvin Scale Defined in terms of two points Defined in terms of two points Agreed upon by International Committee on Weights and Measures in 1954Agreed upon by International Committee on Weights and Measures in 1954 First point is absolute zero First point is absolute zero Second point is the triple point of water Second point is the triple point of water Triple point is the single point where water can exist as solid, liquid, and gasTriple point is the single point where water can exist as solid, liquid, and gas Single temperature and pressureSingle temperature and pressure Occurs at 0.01º C and P = 4.58 mm HgOccurs at 0.01º C and P = 4.58 mm Hg

13 Modern Definition of Kelvin Scale, cont The temperature of the triple point on the Kelvin scale is 273.16 K The temperature of the triple point on the Kelvin scale is 273.16 K Therefore, the current definition of of the Kelvin is defined as Therefore, the current definition of of the Kelvin is defined as 1/273.16 of the temperature of the triple point of water

14 Some Kelvin Temperatures Some representative Kelvin temperatures Some representative Kelvin temperatures Note, this scale is logarithmic Note, this scale is logarithmic Absolute zero has never been reached Absolute zero has never been reached

15 Fahrenheit Scales Most common scale used in the US Most common scale used in the US Temperature of the freezing point is 32º Temperature of the freezing point is 32º Temperature of the boiling point is 212º Temperature of the boiling point is 212º 180 divisions between the points 180 divisions between the points

16 Comparing Temperature Scales

17 Converting Among Temperature Scales

18 Equation of State Pressure(P), volume(V), temperature(T), and amount of substance(m) are called state variables Pressure(P), volume(V), temperature(T), and amount of substance(m) are called state variables State variables are connected State variables are connected Relationship between state variables is the equation of state Relationship between state variables is the equation of state

19 Ideal Gas A gas does not have a fixed volume or pressure A gas does not have a fixed volume or pressure In a container, the gas expands to fill the container In a container, the gas expands to fill the container Most gases at room temperature and pressure behave approximately as an ideal gas Most gases at room temperature and pressure behave approximately as an ideal gas

20 Characteristics of an Ideal Gas Collection of atoms or molecules that move randomly Collection of atoms or molecules that move randomly Exert no long-range force on one another Exert no long-range force on one another Each particle is individually point-like Each particle is individually point-like Occupying a negligible volumeOccupying a negligible volume

21 Moles It’s convenient to express the amount of gas in a given volume in terms of the number of moles, n It’s convenient to express the amount of gas in a given volume in terms of the number of moles, n One mole is the amount of the substance that contains as many particles as there are atoms in 12 g of carbon-12 One mole is the amount of the substance that contains as many particles as there are atoms in 12 g of carbon-12 n: number of moles m: mass of gas M: molecular mass

22 Avogadro’s Number The number of particles in a mole is called Avogadro’s Number The number of particles in a mole is called Avogadro’s Number N A =6.02 x 10 23 particles / moleN A =6.02 x 10 23 particles / mole Defined so that 12 g of carbon contains N A atomsDefined so that 12 g of carbon contains N A atoms The mass of an individual atom can be calculated: The mass of an individual atom can be calculated:

23 Avogadro’s Number and Masses The mass in grams of one Avogadro's number of an element is numerically the same as the mass of one atom of the element, expressed in atomic mass units, u The mass in grams of one Avogadro's number of an element is numerically the same as the mass of one atom of the element, expressed in atomic mass units, u Carbon has a mass of 12 u Carbon has a mass of 12 u 12 g of carbon consists of N A atoms of carbon12 g of carbon consists of N A atoms of carbon Holds for molecules, also Holds for molecules, also

24 Road to Ideal Gas Law V is proportional to the number of moles n (keep P and T constant) V is proportional to the number of moles n (keep P and T constant) If T is constant, PV=constant (Boyle’s law) If T is constant, PV=constant (Boyle’s law) If P is constant, VT (Gay-Lussac’s law) If P is constant, VT (Gay-Lussac’s law)

25 Ideal Gas Law PV = n R T PV = n R T R is the Universal Gas ConstantR is the Universal Gas Constant R = 8.31 J / mole. KR = 8.31 J / mole. K R = 0.0821 L. atm / mole. KR = 0.0821 L. atm / mole. K Is the equation of state for an ideal gasIs the equation of state for an ideal gas

26 Ideal Gas Law, cont Good approximation for real gas at low pressure, quite good at moderate pressure Good approximation for real gas at low pressure, quite good at moderate pressure For a given amount of gas For a given amount of gas

27 Ideal Gas Law, more Standard pressure and temperature (P=1 atm, T=0 °C=273 °K) Standard pressure and temperature (P=1 atm, T=0 °C=273 °K)

28 Ideal Gas Law, more Partial pressure concept– total pressure is the sum of partial pressure of the components Partial pressure concept– total pressure is the sum of partial pressure of the components Air: O 2, N 2, C O 2, Water vapor, etc. Air: O 2, N 2, C O 2, Water vapor, etc.

29 Example A tank of volume 590 liters contains oxygen at 20 °C and at 5 atm. Calculate the mass of oxygen in the tank. (M=32 kg/kmole for oxygen or 32g/mole)

30 Example An ideal gas has volume 1 liter at 1 atm and –20 °C. How many atm must it be subjected to when compressed to 0.5 liter at a temperature of 40 °C?

31 Example The cork of a popgun is inserted so tightly that a pressure of 3 atm is required to dislodge it. Air is admitted through a hole at A, which is 24 cm from the cork at B. How far from A is the piston when the cork pops out, assuming no temperature change?


Download ppt "Thermal Physics Thermal physics is the study of Thermal physics is the study of TemperatureTemperature HeatHeat How these affect matterHow these affect."

Similar presentations


Ads by Google