Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 22: The Shoulder Complex

Similar presentations


Presentation on theme: "Chapter 22: The Shoulder Complex"— Presentation transcript:

1 Chapter 22: The Shoulder Complex
© McGraw-Hill Higher Education. All rights reserved.

2 © 2011 McGraw-Hill Higher Education. All rights reserved.
The shoulder is an extremely complicated region of the body Joint which has a high degree of mobility but not without compromising stability Involved in a variety of overhead activities relative to sport making it susceptible to a number of repetitive and overused type injuries © McGraw-Hill Higher Education. All rights reserved.

3 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure 22-2 A © McGraw-Hill Higher Education. All rights reserved.

4 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure 22-2 B © McGraw-Hill Higher Education. All rights reserved.

5 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure 22-3 A - C © McGraw-Hill Higher Education. All rights reserved.

6 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure 22-4 A & B © McGraw-Hill Higher Education. All rights reserved.

7 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure 22-4 C © McGraw-Hill Higher Education. All rights reserved.

8 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure 22-5 © McGraw-Hill Higher Education. All rights reserved.

9 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure 22-6 © McGraw-Hill Higher Education. All rights reserved.

10 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure 22-7 © McGraw-Hill Higher Education. All rights reserved.

11 © 2011 McGraw-Hill Higher Education. All rights reserved.
Functional Anatomy Great degree of mobility w/ limited stability Round humeral head that articulates w/ a flat glenoid Rotator cuff & long head of the biceps provide dynamic stability Supraspinatus compresses the head while the other rotator cuff muscles depress the humeral head during overhead motion Integration of the capsule and rotator cuff Muscle contractions dynamically control the capsule © McGraw-Hill Higher Education. All rights reserved.

12 © 2011 McGraw-Hill Higher Education. All rights reserved.
The scapula stabilizing muscles and the relationship with the other joints of the shoulder complex and the glenohumeral joint is critical Scapulohumeral Rhythm Movement of scapula relative to the humerus Initial 30 degrees of glenohumeral abduction does not incorporate scapular motion (setting phase) After the initial 30 degrees of abduction, there is a 2:1 ratio between glenohumeral and scapulothoracic joint motion © McGraw-Hill Higher Education. All rights reserved.

13 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure 22-8 © McGraw-Hill Higher Education. All rights reserved.

14 Prevention of Shoulder Injuries
Proper physical conditioning is key Develop body and specific regions relative to activities Strengthen through a full ROM Warm-up should be used before explosive arm movements are attempted May involve tubing exercises, particularly for throwers Generate moderate activation in rotator cuff, scapula stabilizer and primary humeral movement muscles © McGraw-Hill Higher Education. All rights reserved.

15 © 2011 McGraw-Hill Higher Education. All rights reserved.
Contact and collision sport athletes should receive proper instruction on falling Protective equipment Mechanics versus overuse injuries Proper instruction on mechanics is critical to limit overuse type injuries © McGraw-Hill Higher Education. All rights reserved.

16 Assessment of the Shoulder Complex
History What is the cause of pain? Mechanism of injury? Previous history? Location, duration and intensity of pain? Crepitus, numbness, distortion in temperature Weakness or fatigue? What provides relief? © McGraw-Hill Higher Education. All rights reserved.

17 © 2011 McGraw-Hill Higher Education. All rights reserved.
Observation Elevation or depression of shoulder tips Position and shape of clavicle Acromion process Biceps and deltoid symmetry Postural assessment (kyphosis, lordosis, shoulders) Position of head and arms Scapular elevation and symmetry Scapular protraction or winging Muscle symmetry Scapulohumeral rhythm © McGraw-Hill Higher Education. All rights reserved.

18 © 2011 McGraw-Hill Higher Education. All rights reserved.
Palpation - Bony Sternoclavicular joint Clavicular shaft Acromioclavicular joint Coracoid process Acromion process Humeral head Greater and lesser tuberosity Bicipital groove Spine of scapula Scapular vertebral border Scapular lateral border Scapular superior angle Scapular inferior angle © McGraw-Hill Higher Education. All rights reserved.

19 © 2011 McGraw-Hill Higher Education. All rights reserved.
Sternoclavicular, acromioclavicular and coracoclavicular ligaments Rotator cuff muscles and tendons Subacromial bursa Sternocleidomastoid Biceps and tendon Coracoacromial ligament Glenohumeral joint capsule Deltoid Rhomboids Latissimus dorsi Serratus Anterior Levator scapulae Trapezius Supraspinatus Infraspinatus Teres major and minor © McGraw-Hill Higher Education. All rights reserved.

20 © 2011 McGraw-Hill Higher Education. All rights reserved.
Special Tests Active and Passive Range of Motion Flexion, extension Abduction and adduction Internal and external rotation Muscle Testing Muscles of the shoulder and those that serve as scapula stabilizers Test for Sternoclavicular Joint Instability With patient seated, pressure is applied to the SC joint anteriorly, superiorly and inferiorly to determine stability or pain associated w/ a joint sprain © McGraw-Hill Higher Education. All rights reserved.

21 © 2011 McGraw-Hill Higher Education. All rights reserved.
Test for Acromioclavicular Joint Instability Palpate for displacement of acromion and distal head of clavicle Apply pressure in all 4 directions to determine stability Tests for Glenohumeral Instability Glenohumeral Translation - anterior and posterior stability Translation of 1cm or greater is an indication of GH ligament instability and inadequacy of glenoid lip Anterior and posterior drawer tests Positive anterior and posterior drawer test indicates insufficiency of anterior and posterior joint capsule and labrum, respectively Sulcus test © McGraw-Hill Higher Education. All rights reserved.

22 © 2011 McGraw-Hill Higher Education. All rights reserved.
Load & Shift Anterior & Posterior Drawer Sulcus Test Clunk Test Figure through 13 © McGraw-Hill Higher Education. All rights reserved.

23 Apprehension tests and Relocation test
Apprehension test used for anterior glenohumeral instability Posterior instability apprehension test Relocation test uses external rotation and posteriorly directed pressure to allow for increased external rotation Figure 22-15 © McGraw-Hill Higher Education. All rights reserved.

24 © 2011 McGraw-Hill Higher Education. All rights reserved.
O’Brien Test (Active Compression Test) Patient flexes GH joint to 90 degrees and horizontally adducted 15 degrees from the sagittal plane Downward pressure is applied with humerus fully internally rotated and externally rotated If pain with internal rotation but decreases with external rotation and there is clicking = SLAP lesion Pain in AC joint may indicate AC joint pathology Figure 22-14 © McGraw-Hill Higher Education. All rights reserved.

25 Test for Shoulder Impingement
Neer’s test and Hawkins-Kennedy test for impingement used to assess impingement of soft tissue structures Positive test is indicated by pain and grimace Figure A & B © McGraw-Hill Higher Education. All rights reserved.

26 Tests for Supraspinatus Muscle Weakness
Drop Arm Test Used to determine tears of rotator cuff (primarily the supraspinatus) Patient abducts shoulder and gradually lowers to starting position Inability to lower arm slowly and controlled will indicate torn supraspinatus Figure A © McGraw-Hill Higher Education. All rights reserved.

27 © 2011 McGraw-Hill Higher Education. All rights reserved.
Empty Can Test 90 degrees of shoulder flexion, internal rotation and 30 degrees of horizontal abduction Downward pressure is applied Weakness and pain are assessed bilaterally for supraspinatus Figure B © McGraw-Hill Higher Education. All rights reserved.

28 © 2011 McGraw-Hill Higher Education. All rights reserved.
Test for Serratus Anterior Weakness Wall push-up - looking for winging scapula Could indicate injury to long thoracic nerve Test for Biceps Irritation Yergason’s test and Speed’s test utilized to determine pain and possible subluxation of biceps tendon Ludington’s test used to assess possible rupture of biceps (feel for contraction while alternating contractions of each biceps) Figure 22-18 © McGraw-Hill Higher Education. All rights reserved.

29 © 2011 McGraw-Hill Higher Education. All rights reserved.
Test for Biceps Irritation Yergason’s test and Speed’s test utilized to determine pain and possible subluxation of biceps tendon Ludington’s test used to assess possible rupture of biceps (feel for contraction while alternating contractions of each biceps) Figure 22-19 © McGraw-Hill Higher Education. All rights reserved.

30 © 2011 McGraw-Hill Higher Education. All rights reserved.
Tests for Thoracic Outlet Compression Syndrome Anterior scalene syndrome (Adson’s test) Compression of subclavian artery by scalenes is assessed Disappearance of pulse when patient turns toward extended arm and takes a breath indicates a positive test Hyperabduction syndrome test (Allen test) Used to assess if pressure from pectoralis minor is compressing brachial plexus and subclavian artery Figure 22-20 © McGraw-Hill Higher Education. All rights reserved.

31 © 2011 McGraw-Hill Higher Education. All rights reserved.
Costoclavicular syndrome test (Roo’s test) Compression of artery between clavicle and first rib Positive if after opening and closing hands for 3 minutes, strength or circulation decreases Also positive if while in military brace position, head is turned in opposite direction and pulse disappears Military Brace Position Used to identify costoclavicular compression of subclavian artery Shoulders are retracted with arm extended 30 degrees Head is then rotated to opposite shoulder Test is positive if pulse disappears Sensation Testing Figure 22-20 © McGraw-Hill Higher Education. All rights reserved.

32 © 2011 McGraw-Hill Higher Education. All rights reserved.
Subjective Shoulder Scale Assessment American Shoulder and Elbow Surgeons (ASES) Subjective Shoulder Scale Patient-derived assessment & physician-derived objective assessment Used for outcomes assessment in patients with shoulder instability, rotator cuff disease, and GH arthritis Pain rated on ordinal scale (0-10) Function is rated on ordinal scale (0-10) based on 10 questions (i.e. ability to put on a coat, managing toileting, reaching a high shelf, combing hair, participating in work and/or sport) © McGraw-Hill Higher Education. All rights reserved.

33 Recognition and Management of Specific Injuries
Clavicular Fractures Etiology Fall on outstretched arm, fall on tip of shoulder or direct impact Occur primarily in middle third (greenstick fracture often occurs in young patients) Signs and Symptoms Generally presents w/ supporting of arm, head tilted towards injured side w/ chin turned away Clavicle may appear lower Palpation reveals pain, swelling, deformity and point tenderness © McGraw-Hill Higher Education. All rights reserved.

34 © 2011 McGraw-Hill Higher Education. All rights reserved.
Clavicular Fractures (continued) Management Closed reduction - sling and swathe, immobilize w/ figure 8 brace for 6-8 weeks Removal of brace should be followed w/ joint mobes, isometrics and use of a sling for 3-4 weeks May require surgical treatment © McGraw-Hill Higher Education. All rights reserved.

35 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure A-C © McGraw-Hill Higher Education. All rights reserved.

36 © 2011 McGraw-Hill Higher Education. All rights reserved.
Scapular Fractures Etiology Result of direct impact or force transmitted up through humerus Signs and Symptoms Pain during shoulder movement as well as swelling and point tenderness Management Sling immediately and follow-up w/ X-ray Use sling for 3 weeks w/ overhead strengthening beginning at week 1 Figure 22-22 © McGraw-Hill Higher Education. All rights reserved.

37 © 2011 McGraw-Hill Higher Education. All rights reserved.
Fractures of the Humerus Etiology Humeral shaft fractures Occur as a result of a direct blow, or fall on outstretched arm Proximal fractures occur due to direct blow, dislocation, fall on outstretched arm May pose danger to nerve and blood supply Epiphyseal fractures are more common in young patients Occurs due to direct blow or indirect blow travelling along long axis of humerus Signs and Symptoms Pain, swelling, point tenderness, decreased ROM © McGraw-Hill Higher Education. All rights reserved.

38 © 2011 McGraw-Hill Higher Education. All rights reserved.
Fractures of the Humerus Management Immediate application of splint, treat for shock and refer Humeral fractures- remove from activity for 3-4 months Proximal fracture - incapacitation 2-6 months Epiphyseal fracture - quick healing - 3 weeks Figure 22-23 © McGraw-Hill Higher Education. All rights reserved.

39 © 2011 McGraw-Hill Higher Education. All rights reserved.
Sternoclavicular Sprain Etiology Indirect force, blunt trauma (may cause displacement) Signs and Symptoms Grade 1 - pain and slight disability Grade 2 - pain, subluxation w/ deformity, swelling and point tenderness and decreased ROM Grade 3 - gross deformity (dislocation), pain, swelling, decreased ROM Possibly life-threatening if dislocates posteriorly Management RICE, reduction if necessary Immobilize for 3-5 weeks followed by graded reconditioning © McGraw-Hill Higher Education. All rights reserved.

40 © 2011 McGraw-Hill Higher Education. All rights reserved.
Acromioclavicular Sprain Etiology Result of direct blow (from any direction), upward force from humerus, Can be graded from 1-6 depending on severity Signs and Symptoms Grade 1 - point tenderness and pain w/ movement; no disruption of AC joint Grade 2 - tear or rupture of AC ligament, partial displacement of lateral end of clavicle; pain, point tenderness and decreased ROM (abduction/adduction) Grade 3 - Rupture of AC and CC ligaments Grade 4 - posterior separation of clavicle © McGraw-Hill Higher Education. All rights reserved.

41 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure 22-26 © McGraw-Hill Higher Education. All rights reserved.

42 © 2011 McGraw-Hill Higher Education. All rights reserved.
Signs and Symptoms Grade 5 - loss of AC and CC ligaments; tearing of deltoid and trapezius attachments; gross deformity, severe pain, decreased ROM Grade 6 - displacement of clavicle behind the coracobrachialis Management Ice, stabilization, referral to physician Grades 1-3 (non-operative) will require 3-4 days and 2 weeks of immobilization respectively Grades 4-6 will require surgery Aggressive rehab is required w/ all grades Joint mobilizations, flexibility exercises, & strengthening should occur immediately Progress as patient is able to tolerate w/out pain and swelling Padding and protection may be required until pain-free ROM returns © McGraw-Hill Higher Education. All rights reserved.

43 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure & 27 © McGraw-Hill Higher Education. All rights reserved.

44 © 2011 McGraw-Hill Higher Education. All rights reserved.
Glenohumeral Joint Sprain Etiology Forced abduction and/or external rotation or a direct blow Signs and Symptoms Pain during movement especially when re-creating MOI Decreased ROM and pain w/ palpation Management RICE for hours; sling After hemorrhaging subsides, cryotherapy, ultrasound and massage can be used along w/ passive and active exercise to regain full ROM When full ROM achieved w/out pain, resistance exercises can be initiated Must be aware of potential development of chronic conditions © McGraw-Hill Higher Education. All rights reserved.

45 © 2011 McGraw-Hill Higher Education. All rights reserved.
Acute Subluxations and Dislocations Etiology Subluxation involves excessive translation of humeral head w/out complete separation from joint Anterior dislocation is the result of an anterior force on the shoulder, forced abduction and external rotation Posterior dislocation occurs due to forced adduction and internal rotation or falling on an extended and internally rotated shoulder Signs and Symptoms Anterior-inferior dislocation - flattened deltoid, prominent humeral head in axilla; arm carried in slight abduction and external rotation; moderate pain and disability © McGraw-Hill Higher Education. All rights reserved.

46 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure 22-28 © McGraw-Hill Higher Education. All rights reserved.

47 © 2011 McGraw-Hill Higher Education. All rights reserved.
Signs and Symptoms Posterior dislocation - severe pain and disability; arm carried in adduction and internal rotation; prominent acromion and coracoid process; limited external rotation and elevation Management RICE and reduction by a physician Immobilize following reduction for 3 weeks Perform isometrics while in sling Progress to resistance exercises as pain allows Return to activity when patient has regained 20% of body weight when tested for internal and external rotation Protective bracing © McGraw-Hill Higher Education. All rights reserved.

48 © 2011 McGraw-Hill Higher Education. All rights reserved.
Possible Complications of Shoulder Dislocations Bankart lesion - permanent anterior defect of labrum Hill Sachs lesion - caused by compression of cancellous bone against anterior glenoid rim creating a divot in the humeral head SLAP lesion - defect in superior labrum that begins posteriorly and extends anteriorly impacting attachment of long head of biceps on labrum Brachial nerves and vessels may be compromised Rotator cuff injuries Fractures Bicipital tendon subluxation and transverse ligament rupture © McGraw-Hill Higher Education. All rights reserved.

49 © 2011 McGraw-Hill Higher Education. All rights reserved.
Chronic Recurrent Instabilities Etiology Traumatic, atraumatic, microtraumatic (repetitive use), congenital and neuromuscular As supporting tissue become more lax, mobility increases resulting in damage to other soft tissue structures Signs and Symptoms Anterior - may have clicking or pain; complain of dead arm during cocking phase (when throwing); pain posteriorly; possible impingement; positive apprehension test Posterior - possible impingement, loss of internal rotation; crepitation; increased laxity; pain anteriorly and posteriorly Multidirectional - inferior laxity; positive sulcus sign; pain and clicking w/ arm at side; possible signs and symptoms associated w/ anterior and posterior instability © McGraw-Hill Higher Education. All rights reserved.

50 © 2011 McGraw-Hill Higher Education. All rights reserved.
Chronic Recurrent Instabilities of the Shoulder Management Conservative treatment involves extensive strengthening (rotator cuff and scapula stabilizers) For multi-directional instability the internal and external rotators along with the biceps should be strengthened Avoid joint mobilizations and flexibility exercises Various harnesses and restraints can be used to limit motion Surgical stabilization may be required to improve function and comfort Strengthening should be continued for a reasonable time before surgery is opted for © McGraw-Hill Higher Education. All rights reserved.

51 © 2011 McGraw-Hill Higher Education. All rights reserved.
Shoulder Impingement Etiology Mechanical compression of supraspinatus tendon, subacromial bursa and long head of biceps tendon due to decreased space under coracoacromial arch Seen in over head repetitive activities Exacerbating factors - laxity and inflammation, postural mal-alignments kyphotic posture, rounded shoulders Signs and Symptoms Diffuse pain, pain on palpation of subacromial space In overhead athletes clinicians may see increased GH external rotation (ERG) and decreased internal rotation (GIRD) Positive impingement and empty can tests © McGraw-Hill Higher Education. All rights reserved.

52 © 2011 McGraw-Hill Higher Education. All rights reserved.
Figure 22-29 © McGraw-Hill Higher Education. All rights reserved.

53 © 2011 McGraw-Hill Higher Education. All rights reserved.
Neer’s progressive stages of shoulder impingement Stage I - result of supraspinatus or biceps tendon injury presenting w/ point tenderness, pain w/ abduction and resisted supination w/ external rotation; edema, thickening of rotator cuff and bursa Occurs in patients < 25 years old Stage II - permanent thickening and fibrosis of supraspinatus and biceps tendon; presenting w/ aching during activity that worsens at night; May experience restricted arm motion © McGraw-Hill Higher Education. All rights reserved.

54 © 2011 McGraw-Hill Higher Education. All rights reserved.
Neer’s progressive stages of shoulder impingement Stage III - history of shoulder problems and pain, tendon defect (3/8 “) or possible muscle tear and permanent scar tissue and thickening of rotator cuff Patients years old Stage IV- infraspinatus and supraspinatus wasting, pain during abduction, tendon defect greater than 3/8”, limited active and full passive ROM, weak resistive ROM and clavicle degeneration © McGraw-Hill Higher Education. All rights reserved.

55 © 2011 McGraw-Hill Higher Education. All rights reserved.
Rotator cuff tear Occurs near insertion on greater tuberosity Partial or complete thickness tear Full thickness tears usually occur in those athletes w/ a long history (generally does not occur in athlete under age 40) Primary mechanism - acute trauma or impingement Involve supraspinatus or rupture of other rotator cuff tendons Management Analgesics, electrical stimulation for pain, NSAID’s and ultrasound for inflammation Restore appropriate mechanics and strengthen rotator cuff to depress and compress humeral head to restore space Strengthen lower extremity and trunk to reduce stress on shoulder Stage III and IV cases may require immobilization and rest and potentially surgery © McGraw-Hill Higher Education. All rights reserved.

56 © 2011 McGraw-Hill Higher Education. All rights reserved.
Scapular Dyskinesis Etiology Abnormal movement of the scapula SICK scapula Scapular malposition Inferior medial scapular winging Coracoid tenderness Kinesis abnormalities of the scapula Occurs due to repetitive use, often in overhead athletes Changes are detrimental to normal function and increase risk of injury Signs and Symptoms Management © McGraw-Hill Higher Education. All rights reserved.

57 © 2011 McGraw-Hill Higher Education. All rights reserved.
Scapular Dyskinesis Signs and Symptoms Affected shoulder tends to be held lower and is rolled forward (slouched) Prominent inferior scapular border due to tight pectoralis major/minor, weak serratus anterior and lower portion of trapezius Posterior tipping may contribute to functional narrowing of subacromial space, leading to pain when shoulder is abducted & externally rotated Winging becomes more pronounced with fatigue and may contribute to impingement and cuff injury Management © McGraw-Hill Higher Education. All rights reserved.

58 © 2011 McGraw-Hill Higher Education. All rights reserved.
Scapular Dyskinesis Management Strengthening scapula stabilizers Stretching of the posterior capsule and pectoralis major, coracobrachialis and short head of biceps Throwing athletes should avoid throwing until scapular positioning improves © McGraw-Hill Higher Education. All rights reserved.

59 © 2011 McGraw-Hill Higher Education. All rights reserved.
Shoulder Bursitis Etiology Chronic inflammatory condition due to trauma or overuse - subacromial bursa Fibrosis, fluid build-up resulting in constant inflammation Signs and Symptoms Pain w/ motion and tenderness during palpation in subacromial space; positive impingement tests Management Cold, ultrasound and NSAID’s to reduce inflammation Remove mechanisms precipitating condition Maintain full ROM to reduce chances of contractures and adhesions from forming © McGraw-Hill Higher Education. All rights reserved.

60 © 2011 McGraw-Hill Higher Education. All rights reserved.
Adhesive Capsulitis (Frozen Shoulder) Etiology Contracted and thickened joint capsule w/ little synovial fluid Chronic inflammation w/ contracted inelastic rotator cuff muscles Generalized pain w/ motions (active and passive) resulting in resistance of movement Signs and Symptoms Pain in all directions both w/ active and passive motion Management Aggressive joint mobilizations and stretching of tight musculature Electric stim for pain and ultrasound for deep heating © McGraw-Hill Higher Education. All rights reserved.

61 © 2011 McGraw-Hill Higher Education. All rights reserved.
Thoracic Outlet Compression Etiology Compression of brachial plexus, subclavian artery and vein due to 1) decreased space between clavicle and first rib, 2) scalene compression, 3) compression by pec. minor, or 4) presence of cervical rib Signs and Symptoms Paresthesia and pain, sensation of cold, impaired circulation, muscle weakness, muscle atrophy and radial nerve palsy Positive anterior scalene test, costoclavicular test and hyperabduction test Management Conservative treatment - correct anatomical condition through stretching (pec minor and scalenes) and strengthening (trapezius, rhomboids, serratus anterior, erector spinae) © McGraw-Hill Higher Education. All rights reserved.

62 © 2011 McGraw-Hill Higher Education. All rights reserved.
Biceps Brachii Rupture Etiology Result of a powerful contraction Generally occurs near origin of muscle at bicipital groove Figure 22-30 © McGraw-Hill Higher Education. All rights reserved.

63 © 2011 McGraw-Hill Higher Education. All rights reserved.
Signs and Symptoms Patient hears a resounding snap and feels sudden and intense pain Protruding bulge may appear near middle of biceps Definite weakness with elbow flexion and supination Management Ice for hemorrhaging, place arm in sling and refer to physician Patient will require surgery Older individual may not require surgery as brachialis serves as primary elbow flexor and most can function without biceps © McGraw-Hill Higher Education. All rights reserved.

64 © 2011 McGraw-Hill Higher Education. All rights reserved.
Bicipital Tenosynovitis Etiology Repetitive, overhead, ballistic activity that involves repeated stretching of biceps tendon causing irritation to the tendon and sheath Signs and Symptoms Tenderness over bicipital groove, swelling, crepitus due to inflammation Pain when performing overhead activities Management Rest, ice and ultrasound to treat inflammation NSAID’s Gradual program of strengthening and stretching © McGraw-Hill Higher Education. All rights reserved.

65 © 2011 McGraw-Hill Higher Education. All rights reserved.
Contusion of Upper Arm Etiology Direct blow Signs and Symptoms Transitory paralysis and inability to use extensor muscles of forearm (if radial nerve impacted) Management RICE for at least 24 hours Provide protection to contused area to prevent repeated episodes that could cause myositis ossificans Maintain ROM © McGraw-Hill Higher Education. All rights reserved.

66 © 2011 McGraw-Hill Higher Education. All rights reserved.
Peripheral Nerve Injuries Etiology Blunt trauma or stretch type injury Signs and Symptoms Constant pain, muscle weakness and paralysis or atrophy (See Table 22-2) Management RICE Transient muscle weakness may occur w/ quick resolution If muscle wasting or atrophy occurs referral to a physician is necessary © McGraw-Hill Higher Education. All rights reserved.

67 © 2011 McGraw-Hill Higher Education. All rights reserved.
Throwing Mechanics Figure 22-31 © McGraw-Hill Higher Education. All rights reserved.

68 © 2011 McGraw-Hill Higher Education. All rights reserved.
Windup Phase First movement until ball leaves gloved hand Lead leg strides forward while both shoulders abduct, externally rotate and horizontally abduct Cocking Phase Hands separate (achieve max. external rotation) while lead foot comes in contact w/ ground Acceleration Max external rotation until ball release (humerus adducts, horizontally adducts and internally rotates) Scapula elevates, abducts and rotates upward © McGraw-Hill Higher Education. All rights reserved.

69 © 2011 McGraw-Hill Higher Education. All rights reserved.
Deceleration Phase Point from ball release until max shoulder internal rotation Eccentric contraction of ext. rotators to decelerate humerus while rhomboids decelerate scapula Follow-Through Phase End of motion when athlete is in a balanced position © McGraw-Hill Higher Education. All rights reserved.

70 Rehabilitation of the Shoulder Complex
Immobilization Will vary depending on injury Isometrics can be performed during immobilization Time in brace or splint are injury specific ROM and strengthening are dictated by healing General Body Conditioning Maintain cardiovascular endurance through cycling, running and walking © McGraw-Hill Higher Education. All rights reserved.

71 © 2011 McGraw-Hill Higher Education. All rights reserved.
Shoulder Joint Mobilization Used to re-establish appropriate joint arthrokinematics Used w/ joint capsule tightness Figure 22-33 © McGraw-Hill Higher Education. All rights reserved.

72 © 2011 McGraw-Hill Higher Education. All rights reserved.
Flexibility Codman’s pendulum exercises and sawing motions should begin early Progress to active assisted ROM in pain free range (cardinal planes) Should be performed in conjunction w/ rotator cuff and scapula strengthening exercises Figure 22-34 © McGraw-Hill Higher Education. All rights reserved.

73 © 2011 McGraw-Hill Higher Education. All rights reserved.
Scapular Strengthening Exercises Figure & 36 © McGraw-Hill Higher Education. All rights reserved.

74 © 2011 McGraw-Hill Higher Education. All rights reserved.
Strengthening Exercises Figure 22-37 © McGraw-Hill Higher Education. All rights reserved.

75 © 2011 McGraw-Hill Higher Education. All rights reserved.
Neuromuscular Control Must regain appropriate firing sequence for specific muscles Biofeedback can be used to regain control Proprioception Closed kinetic chain exercises will be required in gymnasts, wrestlers and weight lifters Emphasize co-contraction muscle activity OKC and CKC are necessary in complete rehab plan © McGraw-Hill Higher Education. All rights reserved.

76 © 2011 McGraw-Hill Higher Education. All rights reserved.
Plyometric Exercises Figure 22-39 © McGraw-Hill Higher Education. All rights reserved.

77 © 2011 McGraw-Hill Higher Education. All rights reserved.
Neuromuscular Control Exercises Figure 22-40 © McGraw-Hill Higher Education. All rights reserved.

78 © 2011 McGraw-Hill Higher Education. All rights reserved.
Functional Progressions Incorporation of sports specific skills Strengthening that involves PNF patterns (resembles throwing) Gradual and progressive increase in angular velocities Return to Activity Based on pre-established criteria Must be based on sound understanding of healing process Objective measures of strength and functional performance testing © McGraw-Hill Higher Education. All rights reserved.


Download ppt "Chapter 22: The Shoulder Complex"

Similar presentations


Ads by Google