Download presentation

Presentation is loading. Please wait.

Published byEthan Salazar Modified over 3 years ago

1
I Sistemi Positivi Grafi dinfluenza: irriducibilità, eccitabilità e trasparenza Lorenzo Farina Dipartimento di informatica e sistemistica A. Ruberti Università di Roma La Sapienza, Italy X Scuola Nazionale CIRA di dottorato Antonio Ruberti Bertinoro, Luglio 2006

2
2 Influence graph Given a continuous-time system or discrete-time the corresponding influence (oriented) graph is denoted by G ( G uxy ): an arc represents the direct influences among variables

3
3 An influence graph is described by a triple ( A #,b #,c T# ) with elements in [ 0, 1 ]. note index inversion

4
4 Example (pendulum)

5
5 For linear systems, the influence graph can be easily obtained from the triple ( A,b,c T ) because each arc of G corresponds to a nonzero element of A, b and c T. Therefore, the matrices A #, b # and c T# are simply the matrices A T, b and c T where the nonzero entries are replaced by ones. Example

6
6

7
7 Examples 1 2 n1n1 n2n2 1 n1n1 2 n2n2 + +

8
8 P is a permutation matrix ( P -1 =P T ) Example C 1 C 2 C 3 C 4 C 5 0

9
9 Irreducible normal form Each diagonal block is irreducible or it is a 1x1 zero matrix

10
10 classification based only on the structure of A !

11
11 Example C C C 2 1 3

12
12 Sufficient conditions for primitivity G x primitive

13
13 Wielandt formula In this case n=4, m min m=10 Example

14
14 More examples ( a ) is irreducible ( G x connected) with r 6 ( b ) is irreducible ( G x connected) with r 2 ( c ) and ( d ) are reducible ( G x not connected) (a) (b) (c) (d) C1C1 C2C2 C1C1 C2C2 C3C3

15
15 Example not excitable

16
16 excitable x(0) 0 u(·) 0 Any positive input x(0 + ) 0 continuous-time systems x(n) 0 discrete-time systems

17
17 Example transparent

18
18 Excitability and/or transparency do not imply reachability and/or observability Example Excitable and transparent system but neither reachable nor observable

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google