Presentation is loading. Please wait.

Presentation is loading. Please wait.

Protista: Algae and Heterotrophic Protist. Protista diverse group of organisms, comprising those eukaryotes that are not animals, fungi, or plants. They.

Similar presentations


Presentation on theme: "Protista: Algae and Heterotrophic Protist. Protista diverse group of organisms, comprising those eukaryotes that are not animals, fungi, or plants. They."— Presentation transcript:

1 Protista: Algae and Heterotrophic Protist

2 Protista diverse group of organisms, comprising those eukaryotes that are not animals, fungi, or plants. They are usually treated as the kingdom Protistaorganismseukaryotesanimals fungiplantskingdom

3 Algae photosynthetic organisms that occur in most habitats. vary from small, single-celled forms to complex multicellular forms- giant kelp 65 meters in length.

4 Algae regarded as simple plants, they actually span more than one domain, including both Eukaryota and Bacteria (see Blue- green algae), as well as more than one kingdom, including plants and protists, the latter being traditionally considered more animal-like (see Protozoa).plantsdomainEukaryotaBacteriaBlue- green algae kingdomplantsprotistsProtozoa

5 All lack leaves, roots, flowers, seeds and other organ structures that characterize higher plants (vascular plants).leavesrootsflowersseedsvascular plants

6 Algae All algae have photosynthetic machinery ultimately derived from the cyanobacteria, and so produce oxygen as a byproduct of photosynthesiscyanobacteriaoxygen algae produce about 73 to 87 percent of the net global production of oxygen

7 far more common in moist, tropical regions than dry ones, because algae lack vascular tissues and other adaptations to live on land. Algae can endure dryness and other conditions in symbiosis with a fungus as lichen.symbiosisfungus lichen

8 Role in Aquatic Ecology Microscopic forms that live suspended in the water column — called phytoplankton — provide the food base for most marine food chains.phytoplankton food chains

9 Ecology of algae Play a role comparable to the role played by plants in the far young terrestrial world. Dominant in freshwater habitats Ponds Streams Lakes

10 Rocky shores Seaweeds Members of red, brown and green algae At low tides can see distinct layers that can withstand large fluctuations of humidity, temperature, salinity and light

11 Offshore Beyond the zone of waves massive brown kelps form forest Provide shelter for diverse fish and invertebrate animals

12 Phytoplankton Plankton- minute photosynthetic cells along with tiny animals Phytoplankton- photosynthetic algae and cyanobacteria Phytoplankton is the beginning of the food chain for heterotrophic organisms that live in oceans of bodies of freshwater

13

14 Protista: Algae and Heterotrophic Protists Dinoflagellates : Phylum Dinophyta Euglenoids: Phylum Euglenophyta Cryptomonads: Phylum Cryptophyta Haptophytes: Phylum Haptophyta The Heterokonts- oomycetes, diatoms, pyhaeophyta Red Algae: Phylum Rhodophyta Green Algae: Phylum Chlorophyta The Slime Molds

15 Marine Phytoplankton Dinoflagellates- Phylum Dinophyta Euglenoids: phylum Haptophytes: phylum Heterokonts- Oomycetes, Diatoms, Phaeophyta Most important eukaryotic members of the marine phytoplanton and therefore essential to the support of marine animal life

16 Algae and “The Carbon Cycle” Algae are able to transform carbon dioxide into carbohydrates or into calcium carbonate Today phytoplankton absorb about One-half of all the Carbon dioxide that results from human activities White cliffs of Dover- calcium carbon deposits “CO2 drawdown” effect

17 Dinoflagellates: Phylum Dinophyta Molecular systematic data- Related to ciliated protozoa such as Paramecium and Vorticella Unicellular biflagellates Marine and freshwater Some dinoflagellates are nonmotile Reproduction- longitudinal cell division

18 Dinoflagellates About half lack a photosynthetic mechanism Ingest solid food particles (tubular process peduncle suction organic material) Or absorb dissolved organic compounds Many photosynthetic dinoflagellates can feed in these ways- Mixotrophy- the ability to utilize both organic and inorganic carbon sources.

19 Symbiotic forms Zooxanthellae- responsible for the photosynthetic productivity that makes possible the growth of coral reefs in tropical waters

20 Dinoflagellates produce toxic or bioluminescent compounds Toxic glycoside released by activated dinoflagellate cysts Paralyze the respiratory tract, dinoflagellates feed on fish then return to cyst stage

21 Euglenoids: Phylum Euglenophyta Earliest euglenoids were phagocytes Mostly Freshwater Contain chloroplast Studies suggest that euglenoids were derived from endosymbiotic green algae 2/3 are colorless heterotrophs that rely upon particle feeding or absorption Euglena

22 Unicellular Lacks cell wall or rigid structure covering plasma membrane Beneath plasma membrane pellicle Swimming Euglena have a single long external flagellum Eyespot

23 Euglena

24 Crytomonads; Phylum Crytophyta

25 Haptophytes : Phylum Haptophyta Mostly Marine phytoplankton Few freshwater and terrestrial forms are known Unicellular flagellates, colonial flagellates, colonial flagellates and non-motile single cells and colonies Haptonema- threadlike structure that extends from the cell and can help catch prey, and sensory

26 Phylum Haptophyta Most are photosynthetic Marine haptophytes serve both as producers and even though most are autotrophic as consumers (each cyanobacteria) Major part in the carbon cycle

27 Characteristics of Haptophyte algae continue Presence of small flat scales on the outer surface of the cell Coccoliths Calcified organic material

28 The Heterokonts “different flagella” Oomycetes; Phylum oomycota Diatoms: Phylum Bacillariophyta Brown algae: Phylum Phaeophyta

29 Oomycetes; Phylum Oomycota “Fungus-like” Heterotrophic The water molds –Saprolegnia can reproduce sexually (heterothallic) and asexually (homothallic) Terrestrial Oomycetes

30 Bacillariophyta(Diatoms) and Phaeophyta Autotrophic Have chlorophyll and carry on photosynthesis (algae) Bacillariophyta: The Diatoms Phaeophyta: The Brown Algae

31 Bacillariophyta: The Diatoms “algae that live in glass houses” Unicellular or colonial organisms Fresh and marine waters Two types of diatoms based on structure –Pennate –Centric

32 Phaeophyta: The Brown Algae Mostly Marine form Abundant in cold ocean waters Kelps- Laminaria, Postelsia, Macrocystis, Nereosystis

33 Sieve tubes Located within the phoelm Transport of carbohydrates in the plantcarbohydrates

34 Fucus “Rockweeds” Sporic meiosis Xsec of blade

35 Red Algae: Phylum Rhodophyta Mostly marine form Warm sease Include “sea mosses” Usually less than 10 cm long

36 Green Algae: Phylum Chlorophyta Class chlorophyceae Class Ulvophyceae, The Ulvophytes –Mainly marine

37 The Slime Molds Phylum Myxomycota –Sporangium of Arcyria nutans –Sporangia of Stemonitis splendens –Plamodiocarp of Hemitrichia serpula –Aethalia of Lycogala


Download ppt "Protista: Algae and Heterotrophic Protist. Protista diverse group of organisms, comprising those eukaryotes that are not animals, fungi, or plants. They."

Similar presentations


Ads by Google