 # 00  0 +1.96sd  0 –sd  0 –1.96sd  0 +sd 2.5% CONFIDENCE INTERVALS probability density function of X null hypothesis H 0 :  =  0 In the sequence.

## Presentation on theme: "00  0 +1.96sd  0 –sd  0 –1.96sd  0 +sd 2.5% CONFIDENCE INTERVALS probability density function of X null hypothesis H 0 :  =  0 In the sequence."— Presentation transcript:

00  0 +1.96sd  0 –sd  0 –1.96sd  0 +sd 2.5% CONFIDENCE INTERVALS probability density function of X null hypothesis H 0 :  =  0 In the sequence on hypothesis testing, we started with a given hypothesis, for example H 0 :  =  0, and considered whether an estimate X derived from a sample would or would not lead to its rejection. 1 X conditional on  =  0 being true

00  0 +1.96sd  0 –sd  0 –1.96sd  0 +sd 2 Using a 5% significance test, this estimate would not lead to the rejection of H 0. CONFIDENCE INTERVALS X probability density function of X conditional on  =  0 being true 2.5% null hypothesis H 0 :  =  0

00  0 +1.96sd  0 –sd  0 –1.96sd  0 +sd 3 This estimate would cause H 0 to be rejected. CONFIDENCE INTERVALS X probability density function of X conditional on  =  0 being true 2.5% null hypothesis H 0 :  =  0

00  0 +1.96sd  0 –sd  0 –1.96sd  0 +sd 4 So would this one. CONFIDENCE INTERVALS X probability density function of X conditional on  =  0 being true 2.5% null hypothesis H 0 :  =  0

00  0 +1.96sd  0 –sd  0 –1.96sd  0 +sd 5 We ended by deriving the range of estimates that are compatible with H 0 and called it the acceptance region. acceptance region for X CONFIDENCE INTERVALS X probability density function of X conditional on  =  0 being true 2.5% null hypothesis H 0 :  =  0

6 Now we will do exactly the opposite. Given a sample estimate, we will find the set of hypotheses that would not be contradicted by it, using a two-tailed 5% significance test. CONFIDENCE INTERVALS X

7 Suppose that someone came up with the hypothesis H 0 :  =  0. CONFIDENCE INTERVALS null hypothesis H 0 :  =  0 00 X

00  0 +1.96sd  0 –sd  0 –1.96sd 8 To see if it is compatible with our sample estimate X, we need to draw the probability distribution of X conditional on H 0 :  =  0 being true. X CONFIDENCE INTERVALS probability density function of X conditional on  =  0 being true null hypothesis H 0 :  =  0

00  0 +1.96sd  0 –sd  0 –1.96sd 9 X To do this, we need to know the standard deviation of the distribution. For the time being we will assume that we do know it, although in practice we have to estimate it. CONFIDENCE INTERVALS probability density function of X conditional on  =  0 being true null hypothesis H 0 :  =  0

00  0 +1.96sd  0 –sd  0 –1.96sd 10 X Having drawn the distribution, it is clear this null hypothesis is not contradicted by our sample estimate. CONFIDENCE INTERVALS probability density function of X conditional on  =  0 being true null hypothesis H 0 :  =  0

11 X Here is another null hypothesis to consider. 11 CONFIDENCE INTERVALS null hypothesis H 0 :  =  1

12 Having drawn the distribution of X conditional on this hypothesis being true, we can see that this hypothesis is also compatible with our estimate. 11  1 +1.96sd  1 +sd  1 –1.96sd X CONFIDENCE INTERVALS probability density function of X conditional on  =  1 being true null hypothesis H 0 :  =  1

13 Here is another null hypothesis. 22 X CONFIDENCE INTERVALS null hypothesis H 0 :  =  2

14 It is incompatible with our estimate because the estimate would lead to its rejection.  2 –sd  2 –1.96sd  2 +sd 22 X CONFIDENCE INTERVALS probability density function of X conditional on  =  2 being true null hypothesis H 0 :  =  2

15 The highest hypothetical value of  not contradicted by our sample estimate is shown in the diagram.  max  max +1.96sd  max –sd  max +sd X CONFIDENCE INTERVALS probability density function of X conditional on  =   max being true null hypothesis H 0 :  =   max

16  max  max +1.96sd  max –sd  max +sd X When the probability distribution of X conditional on it is drawn, it implies X lies on the edge of the left 2.5% tail. We will call this maximum value  max. CONFIDENCE INTERVALS probability density function of X conditional on  =   max being true null hypothesis H 0 :  =   max

17  max  max +1.96sd  max –sd  max +sd X If the hypothetical value of  were any higher, it would be rejected because X would lie inside the left tail of the probability distribution. CONFIDENCE INTERVALS probability density function of X conditional on  =   max being true null hypothesis H 0 :  =   max

18  max  max +1.96sd  max –sd  max +sd X Since X lies on the edge of the left 2.5% tail, it must be 1.96 standard deviations less than  max. CONFIDENCE INTERVALS probability density function of X conditional on  =   max being true reject any  >  max X =  max – 1.96 sd null hypothesis H 0 :  =   max

19  max  max +1.96sd  max –sd  max +sd X Hence, knowing X and the standard deviation, we can calculate  max. CONFIDENCE INTERVALS probability density function of X conditional on  =   max being true reject any  >  max X =  max – 1.96 sd  max = X + 1.96 sd reject any  > X + 1.96 sd null hypothesis H 0 :  =   max

20 In the same way, we can identify the lowest hypothetical value of  that is not contradicted by our estimate.  min  min –sd  min –1.96sd  min +sd X CONFIDENCE INTERVALS probability density function of X conditional on  =   min being true null hypothesis H 0 :  =   min

21  min  min +sd X It implies that X lies on the edge of the right 2.5% tail of the associated conditional probability distribution. We will call it  min.  min –sd  min –1.96sd CONFIDENCE INTERVALS probability density function of X conditional on  =   min being true null hypothesis H 0 :  =   min

22  min  min +sd X  min –sd  min –1.96sd Any lower hypothetical value would be incompatible with our estimate. CONFIDENCE INTERVALS probability density function of X conditional on  =   min being true null hypothesis H 0 :  =   min

23  min  min +sd X  min –sd  min –1.96sd Since X lies on the edge of the right 2.5% tail, X is equal to  min plus 1.96 standard deviations. Hence  min is equal to X minus 1.96 standard deviations. CONFIDENCE INTERVALS probability density function of X conditional on  =   min being true reject any  <   min X =   min + 1.96 sd   min = X – 1.96 sd reject any  < X – 1.96 sd null hypothesis H 0 :  =   min

The diagram shows the limiting values of the hypothetical values of , together with their associated probability distributions for X. 24 (1)(2)  min  min +sd X  min –sd  min –1.96sd  max  max +1.96sd  max –sd  max +sd CONFIDENCE INTERVALS probability density function of X (1) conditional on  =   max being true (2) conditional on  =   min being true

25 (1)(2)  min  min +sd X  min –sd  min –1.96sd  max  max +1.96sd  max –sd  max +sd Any hypothesis lying in the interval from   min to   max would be compatible with the sample estimate (not be rejected by it). We call this interval the 95% confidence interval. CONFIDENCE INTERVALS reject any  >   max = X + 1.96 sd reject any  <   min = X – 1.96 sd 95% confidence interval: X – 1.96 sd ≤  ≤ X + 1.96 sd

26 (1)(2)  min  min +sd X  min –sd  min –1.96sd  max  max +1.96sd  max –sd  max +sd The name arises from a different application of the interval. It can be shown that it will include the true value of the coefficient with 95% probability, provided that the model is correctly specified. CONFIDENCE INTERVALS reject any  >   max = X + 1.96 sd reject any  <   min = X – 1.96 sd 95% confidence interval: X – 1.96 sd ≤  ≤ X + 1.96 sd

27 In exactly the same way, using a 1% significance test to identify hypotheses compatible with our sample estimate, we can construct a 99% confidence interval. CONFIDENCE INTERVALS 95% confidence interval X – 1.96 sd ≤  ≤ X + 1.96 sd 99% confidence interval X – 2.58 sd ≤  ≤ X + 2.58 sd Standard deviation known

28   min and   max will now be 2.58 standard deviations to the left and to the right of X, respectively. CONFIDENCE INTERVALS 95% confidence interval X – 1.96 sd ≤  ≤ X + 1.96 sd 99% confidence interval X – 2.58 sd ≤  ≤ X + 2.58 sd Standard deviation known

29 Until now we have assumed that we know the standard deviation of the distribution. In practice we have to estimate it. CONFIDENCE INTERVALS 95% confidence interval X – 1.96 sd ≤  ≤ X + 1.96 sd 99% confidence interval X – 2.58 sd ≤  ≤ X + 2.58 sd 95% confidence interval X – t crit (5%) se ≤  ≤ X + t crit (5%) se 99% confidence interval X – t crit (1%) se ≤  ≤ X + t crit (1%) se Standard deviation estimated by standard error Standard deviation known

30 As a consequence, the t distribution has to be used instead of the normal distribution when locating   min and   max. CONFIDENCE INTERVALS 95% confidence interval X – 1.96 sd ≤  ≤ X + 1.96 sd 99% confidence interval X – 2.58 sd ≤  ≤ X + 2.58 sd 95% confidence interval X – t crit (5%) se ≤  ≤ X + t crit (5%) se 99% confidence interval X – t crit (1%) se ≤  ≤ X + t crit (1%) se Standard deviation estimated by standard error Standard deviation known

This implies that the standard error should be multiplied by the critical value of t, given the significance level and number of degrees of freedom, when determining the limits of the interval. 95% confidence interval X – 1.96 sd ≤  ≤ X + 1.96 sd 99% confidence interval X – 2.58 sd ≤  ≤ X + 2.58 sd 31 CONFIDENCE INTERVALS 95% confidence interval X – t crit (5%) se ≤  ≤ X + t crit (5%) se 99% confidence interval X – t crit (1%) se ≤  ≤ X + t crit (1%) se Standard deviation estimated by standard error Standard deviation known

Copyright Christopher Dougherty 2012. These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section R.12 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre http://www.oup.com/uk/orc/bin/9780199567089/http://www.oup.com/uk/orc/bin/9780199567089/. Individuals studying econometrics on their own who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics http://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspx http://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspx or the University of London International Programmes distance learning course EC2020 Elements of Econometrics www.londoninternational.ac.uk/lsewww.londoninternational.ac.uk/lse. 2012.11.02

Download ppt "00  0 +1.96sd  0 –sd  0 –1.96sd  0 +sd 2.5% CONFIDENCE INTERVALS probability density function of X null hypothesis H 0 :  =  0 In the sequence."

Similar presentations