Presentation is loading. Please wait.

Presentation is loading. Please wait.

L O A Victor Malka LOA, ENSTA – CNRS - École Polytechnique, 91761 Palaiseau cedex, France Laser-Plasma Accelerators : Status, Applications and Perspectives.

Similar presentations

Presentation on theme: "L O A Victor Malka LOA, ENSTA – CNRS - École Polytechnique, 91761 Palaiseau cedex, France Laser-Plasma Accelerators : Status, Applications and Perspectives."— Presentation transcript:

1 L O A Victor Malka LOA, ENSTA – CNRS - École Polytechnique, Palaiseau cedex, France Laser-Plasma Accelerators : Status, Applications and Perspectives Laser beam Electron beam 1 mm INFN, Frascati, March 7 (2006)

2 L O A Particle group F. Ewald J. Faure Y. Glinec A. Lifschitz Laser group F. Burgy B. Mercier J.Ph. Rousseau A.Pukhov, University of Dusseldorf, Germany ELF SPL Collaborators E. Lefebvre, CEA/DAM Ile-de-France, France Supported by EEC under FP6 : CARE INFN, Frascati, March 7 (2006)

3 L O A E-field max few 10 MeV /meter (Breakdown) R>R min Synchrotron radiation Classical accelerator limitations LEP at CERN 27 km Circle road 31 km New medium : the plasma Energy = Length = $$$ PARIS INFN, Frascati, March 7 (2006)

4 L O A Why is a Plasma useful ? Plasma is an Ionized Medium High Electric Fields epz nE~~ w Superconducting RF-Cavities : E z = 55 MV/m ez nE~ Are Relativistic Plasma waves efficient ? E z = 0.3 GV/m for 1 % Density Perturbation at cc -1 E z = 300 GV/m for 100 % Density Perturbation at cc -1 INFN, Frascati, March 7 (2006)

5 L O A Tajima&Dawson, PRL79 How to excite Relativistic Plasma waves ? The laser wake field laser T p / 2 = >Short laser pulse Laser pulse F-grad I Electron density perturbation Phase velocity v epw =v g laser => close to c Analogy with a boat INFN, Frascati, March 7 (2006)

6 L O A electron Analogy: t 1 t 2 t 3 e >> >> 1 => E max (MeV)=( n/n)(n c /n e ) =>L deph. =(=( 0 /2)(n c /n e ) 3/2 E max =2( n/n) 2 mc 2 L Deph. = p 2 Analogy electron/surfer INFN, Frascati, March 7 (2006)

7 L O A INFN, Frascati, March 7 (2006)

8 L O A Few MeV gain Laser Injected electrons Few MeV Injected electrons acceleration with laser : Wake field (Beat wave) INFN, Frascati, March 7 (2006)

9 L O A The 3-MeV electrons are accelerated up to 4.5 MeV Wakefield : Acceleration in 1.5 GV/m 2.5 J, 350 fs, W/cm 2, 0.5 mbar He Amiranoff et al. PRL 1998 LULI/LPNHE/LPGP/LSI/IC INFN, Frascati, March 7 (2006)

10 L O A Laser beam Electron beam 1 mm Direct production of e-beam INFN, Frascati, March 7 (2006)

11 L O A How to generate an electron beam? Self-modulated Laser Wakefield Scheme (Andreev, Sprangle, Antonsen 1992) c p enhances Wavebreaking P c (GW) = / p 2 Short Pulse Energetic Electrons if then excites INFN, Frascati, March 7 (2006)

12 L O A Wave breaking : from waves to particles INFN, Frascati, March 7 (2006)

13 L O A. Relativistic wave breaking A. Modena et al., Nature 1995 Multiple satellites : high amplitude plasma waves broadening at higher densities Loss of coherence of the relativistic plasma waves Forward Raman Spectra Intensity (U. A.) spectral shift ( p ) n e =0.5x10 19 cm -3 n e =1.5x10 19 cm -3 Electrons/MeV Energy (MeV) n e =0.5x10 19 cm -3 n e =1.5x10 19 cm -3 Electron spectra INFN, Frascati, March 7 (2006)

14 L O A 5-pass Amp. : 200 mJ 8-pass pre-Amp. : 2 mJ Oscillator : 2 nJ, 15 fs Stretcher : 500 pJ, 400 ps After Compression : 1 J, 30 fs, 0.8 m, 10 Hz, m Nd:YAG : 10 J 4-pass, Cryo. cooled Amp. : < 3.5 J, 400 ps Salle Jaune Laser

15 L O A. z rayon 2 mill. z rayon 2 mill Phase (radians) Density (10 18 cm -3 ) Rayon (mm) Densité de neutre (cm -3 ) Neutral profil density measurements : the gas jets lab V. Malka et al., RSI (2000) INFN, Frascati, March 7 (2006)

16 L O A S. Semushin & V. Malka et al., RSI (2001) Gas Jet Nozzle Design For laser plasma studies Dcrit mm D exit mm L opt mm Mach exit Next cm x x x x x x x x Dcrit mm D exit mm L opt mm Mach exit Next cm-3 INFN, Frascati, March 7 (2006)

17 L O A E max (MeV) n e (cm -3 ) E max =4 p 2 m e c 2 dn n Tunable electron beam : temperature Electrons are accelerated by epw V. Malka et al., PoP (2001) F/6 INCREASE THE ACCELERATION LENGTH INFN, Frascati, March 7 (2006)

18 L O A Interaction chamber (inside) Laser beam electron beam 50 cm INFN, Frascati, March 7 (2006)

19 L O A Summary of FLWF previous results V. Malka et al., Science, 298, 1596 (2002) Energy (MeV) Detection Threshold Number of electron (/MeV/sr) Experiments INFN, Frascati, March 7 (2006)

20 L O A INFN, Frascati, March 7 (2006)

21 L O A SMLWF : Multiple e - bunches / FLWF Single e - bunch Electron bunches laser Electric field Ps V. Malka, Europhysics news, April 2004 Ps/fs Electron bunch laser Electron density perturbation n e /n 0 -1 Electric field 0 fs INFN, Frascati, March 7 (2006)

22 L O A Laser pulse autocorrelation time (fs) no plasman e =7.5×10 18 cm r (mm) sensitive to c p duration depends on pulse shape (gaussian) Initial duration ~ 38+/-2 fs Final duration ~ 9.5+/-2 fs Energy efficiency ~ 20 % J. Faure et al., Phys. Rev. Lett. 95, (2005) Lineouts Possible shape 9.5 fs INFN, Frascati, March 7 (2006)

23 L O A Quasi-Monoenergetic Electron Beams In homogenous plasma : virtual or real? E, MeV t=350 t=450 t=550 t=650 t=750 t= N e / MeV Time evolution of electron spectrum monoenergetic electron beam VLPL A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B, 74, p.355 (2002) One stage LPA INFN, Frascati, March 7 (2006)

24 L O A Experimental Setup : single shot measurement INFN, Frascati, March 7 (2006)

25 L O A 2.0 x cm -3 Divergence = 6 mrad Recent results on e-beam : Spatial quality improvements 6.0 x cm x cm x cm x cm x cm -3 INFN, Frascati, March 7 (2006)

26 L O A Recent results on e-beam : From Mono to maxwellian spectra Electron density scan V. Malka, et al., PoP 2005 INFN, Frascati, March 7 (2006)

27 L O A Charge in [ ] MeV : (500 ±200) pC Energy distribution improvements: The Bubble regime PIC Experiment Divergence = 6 mrad INFN, Frascati, March 7 (2006)

28 L O A FLWF/BR : Beam charge improvement DE/E=10% FLWF Bubble regime Energy (MeV) Charge (pC) 500 INFN, Frascati, March 7 (2006)

29 L O A 14 Groups have now measured a quasi mono energetic e-beam RAL & LBNL 50 pC 300 pC very hot topic ! INFN, Frascati, March 7 (2006)

30 L O A Applications and New Science X-rays:diffraction -rays:radiography Material science Medicine Radiotherapy Proton-therapy Radioisotopes PET Radiobiology Accelerator Physics e beam, and p beam ? and nuclear physics High current Chemistry Radiolysis by ultra short e or p beam New science on ultrashort phenomena INFN, Frascati, March 7 (2006)

31 L O A Particle beam in medicine : Radiotherapy 99% Radiotherapy with X ray INFN, Frascati, March 7 (2006)

32 L O A Radiation Therapy : context Depth in tissue Photon dose Photon beams are commonly used for radiation therapy tumor Photon beam Dose INFN, Frascati, March 7 (2006)

33 L O A Medical application : Radiotherapy VHE ELECTRONS e beam INFN, Frascati, March 7 (2006)

34 L O A VHE Radiation Therapy Depth in tissue VHE dose l Reduced dose in save cells l Deep traitement l Good lateral contrast tumor VHE Dose INFN, Frascati, March 7 (2006)

35 L O A Monte Carlo simulation of the dose deposition in water Electron gun : quasi-monoenergetic (170MeV) with 0.5nC and 10mrad divergence Water target : 40cm x 4cm x 4cm divided in 100 pixels in all directions. Simulation parameters : CutRange=100um and N 0 =10 5 electrons In collaboration with DKFZ e beam INFN, Frascati, March 7 (2006)

36 L O A Dose deposition profile in water Glinec et al., Med. Phys. 33, 1 (2006) e beam INFN, Frascati, March 7 (2006)

37 L O A In collaboration with L. Le-Dain, S. Darbon from CEA Mourainvilier and DAM Advantages: low divergence, point-like electron source Application: high resolution -radiography INFN, Frascati, March 7 (2006)

38 L O A Higher resolution: of the order of 400 m In collaboration with L. Le-Dain, S. Darbon from CEA Mourainvilier and DAM -radiography results measured calculated object INFN, Frascati, March 7 (2006) Y. Glinec et al., Phys. Rev. Lett., (2005)

39 L O A Application for radiolysis : H 2 O (e - s, OH., H 2 O 2, H 3 O +, H 2, H. ) e-e- Very important for: Biology Ionising radiations effects In collaboration with Y. Gauduel s group INFN, Frascati, March 7 (2006)

40 L O A radiolysis in the sub ps domain: B. Brozek-Pluska, et al. Radiation and Chemistry, 72, (2005). INFN, Frascati, March 7 (2006)

41 L O A Applications : X rays source Laser based Synchrotron radiation l u ~ m E (MeV) l u ~ cm 3 mm 100 m Laser Accélérateur E (GeV) Rayonnement X SynchrotronLaser based Synchrotron radiation onduleur INFN, Frascati, March 7 (2006)

42 L O A Betatron oscillation r 0 ~ m Plasma wiggler u ~ 100 m K ~ 20>1,wiggler u ~ 100 m x Helium Plasma accelerator Acceleration field ~ TeV / meter E L 200 MeV X-ray beam: 10 9 ph/shot 20 mrad femtosecond K ~ r 0 / bet. Principles of the Betatron radiation INFN, Frascati, March 7 (2006) A. Rousse et al., Phys. Rev. Lett 93, (2004)

43 L O A Laser plasma acceleration has demonstrated Energy gains of 1 MeV to 200 MeV E-fields of 1 GV/m to 1000 GV/m Good e-beam quality : Emittance < 3 mm.mrad charge at high energy Quasi monoenergetic Very high peak current : 100 kA Laser plasma accelerators advantages Provide e-beam with new parameters : short Provide e-beam with new parameters : high current Provide e-beam with new parameters : Collimated Compact and low cost The laser plasma accelerators status INFN, Frascati, March 7 (2006)

44 L O A Laser plasma accelerator: enhance stability electron sources up to 1 GeV (nC, <1 ps): Guiding or PW class laser systems Single Stage (Pukhov, Mori) (200TW) Generate a tunable e-beam applications of these electron sources Compact XFEL Perspectives INFN, Frascati, March 7 (2006)

45 L O A After 5 Z r / 7.5 mm Energy (MeV) f(E) (a.u.) w 0 20 m 30fs a m P 200TW n p cm 3 * Gordienko et al, PoP 2005, UCLA& Golp groups PW class : GeV electron beams => XFEL INFN, Frascati, March 7 (2006)

46 L O A GeV acceleration in two-stages GeV Laser Plasma channel TW ~50 fs Nozzle Gas-Jet Laser 170±20 MeV 30 fs 10 mrad 1 J 10 TW 30 fs Pulse guiding condition : Δn>1/πr e r c 2 Weak nonlinear effects more control : a 0 ~ 1-2 High quality beams : L b <λ p n 0 <10 18 cm -3 rcrc ΔnΔn n0n0 Density profile INFN, Frascati, March 7 (2006)

47 L O A GeV in low plasma density in plasma channel n 0 = cm -3, 11 J TW r c =40 μm, Δn=2 n 0 L channel =4 cm 8 cm 12 cm dN/dE(a.u.) Energy (MeV) Electron bunch Electric field Electron bunch Electric field INFN, Frascati, March 7 (2006) V. Malka et al., Plasma Phys. Control. Fusion 47 (2005) B481–B490

48 L O A 1% bandwidth for 1.2 GeV high quality e-beam x ,511,5 E(GeV) dN/dE n 0 = cm -3, 10 J-0.16 PW L channel = 18 cm, Emittance : 0.01mm.mrad V. Malka et al., to be published in NIM A Electron bunch Electric field Ultra-short bunch Applications: study of complex structures (X-ray diffraction, EXAFS) But ps time scale ps ~ rad 10cm

49 L O A Extreme Light Infrastructure ELI A science integrator that will bring many frontiers of contemporary physics, i.e. relativistic plasma physics, particle physics, nuclear physics, gravitational physics, nonlinear field theory, ultrahigh pressure physics, and cosmology together. ELI will provide a new generation of compact accelerators delivering ultra short (fs-as) and energetic particle and radiation beams for European scientists. ELI will work in close contact with synchrotron X rays FEL community. ELI will also be an Extreme Light technology platform ready to reduce to practice the latest invention and discovery in relativistic engineering ELI INFN, Frascati, March 7 (2006)

50 L O A Fundamental Interaction Ultra-Relativistic optics Super hot plasma Nuclear Physics Astrophysics General relativity Ultra fast phenomena NLQED Relativistic Engineering ELI Extreme Light Infrastructure Exawatt Laser Secondary Beam Sources Electrons Positron ion Muon Neutrino Neutrons X rays rays acceleratorsaccelerators Synchr.XfelSynchr.Xfel Attosecond optics Rel. Microelectronic Rel. Microphotonic Nuclear treatement Nuclear pharmacology Hadron therapy Radiotherapy Material science INFN, Frascati, March 7 (2006)

51 L O A Relativistics microelectronic devices Plasma cavity 100 m 1 m RF cavity Courtesy of W. Mori & L. da Silva INFN, Frascati, March 7 (2006)

52 L O A 1PW >1Hz 10PW, 1 Hz >100PW, 1Hz ELI ELIs strategy for accelerator physics GeV e-beam.2 GeV p-beam 10 GeV e-beam GeV p-beam 50 GeV e-beam few GeV p-beam Beam lines for users e, p, X, etc… synchroton & XFEL communities Fundamental physics Multi stage accelerator Single stage accelerator Accelerator community INFN, Frascati, March 7 (2006)

53 L O A Parameter designs Laser Plasma Accelerators ELI : > 100 GeV Q (nC) k e k91502e e e E(Gev)E(J)L(m)W 0 (μm) n e (cm -3 ) τ (fs)P(PW) Golp and UCLA Group a 0 =4 INFN, Frascati, March 7 (2006)

54 L O A Electron beam energy and laser power evolution Laser Power (W) « conventional » technology Maximale Electrons Energy (MeV) Years LULI RAL LOA * LLNL UCLA ILE ¤ KEK UCLA ELIELI ELI * LLNL * LUND INFN, Frascati, March 7 (2006)

55 L O A Towards an Integrated Scientific Project for European Researcher : ELI ELI INFN, Frascati, March 7 (2006)

Download ppt "L O A Victor Malka LOA, ENSTA – CNRS - École Polytechnique, 91761 Palaiseau cedex, France Laser-Plasma Accelerators : Status, Applications and Perspectives."

Similar presentations

Ads by Google