Presentation is loading. Please wait.

Presentation is loading. Please wait.

THEORETICAL LIMITS FOR SIGNAL REFLECTIONS DUE TO INDUCTANCE FOR ON-CHIP INTERCONNECTIONS F. Huret, E. Paleczny, P. Kennis F. Huret, E. Paleczny, P. Kennis.

Similar presentations


Presentation on theme: "THEORETICAL LIMITS FOR SIGNAL REFLECTIONS DUE TO INDUCTANCE FOR ON-CHIP INTERCONNECTIONS F. Huret, E. Paleczny, P. Kennis F. Huret, E. Paleczny, P. Kennis."— Presentation transcript:

1 THEORETICAL LIMITS FOR SIGNAL REFLECTIONS DUE TO INDUCTANCE FOR ON-CHIP INTERCONNECTIONS F. Huret, E. Paleczny, P. Kennis F. Huret, E. Paleczny, P. Kennis Institut d ’Electronique et de Microélectronique du Nord, UMR CNRS 9929 D. Deschacht, G. Servel D. Deschacht, G. Servel Laboratoire d’Informatique, de Robotique Laboratoire d’Informatique, de Robotique et de Microélectronique, UMR CNRS 5506. et de Microélectronique, UMR CNRS 5506. SLIP ’2000, San Diego, April 8-9th. SLIP ’2000, San Diego, April 8-9th.

2 OUTLINE OF THE TALK Introduction Theoretical limits Electromagnetic analysis : - Methodology - Application Limits between RLC and RC models Illustration of the theoretical limits : - in frequency-domain - in time domain Comparison with previous work Conclusion

3 INTRODUCTION  0.7µm, 2 metal layers  Up to 100,000 devices on a chip  Typical CPU frequency 50MHz  0.25µm, 6 metal  Up to 10,000,000 devices on a chip  Typical CPU frequency 400 MHz 1989 1999 IC 10 years of evolution evolution

4 INTRODUCTION With the continued scaling down of technology, increased die aera : * cross-section decreases * interconnect length increases interconnections : blocking point of performances improvement Introduction of new materials such as Cu inclusion of inductance ?

5 INTRODUCTION Interconnect delay dominates gate delay in current deep submicronic VLSI circuits. More accurate interconnect models and signal propagation characterization are required. With faster on-chip rise times inductance is becoming more important. Electromagnetic analysis is needed.

6 THEORETICAL LIMITS L ong lines : Static hypothesis Short lines : Traveling wave

7 Range of lengths for inductance inclusion : We have to determine  attenuation factor  phase factor x : attenuation coefficient THEORETICAL LIMITS

8 Propagation parameters of the waveguide INTERCONNECTION = WAVEGUIDE   Phase factor rad/cm Attenuation factor dB/cm ou Np/cm Zc Characteristic impedance ELECTROMAGNETIC ANALYSIS Methodology Full wave analysis Finite Element Method

9 ELECTROMAGNETIC ANALYSIS Methodology Definitons of the voltage-current matrices used in this analysis

10 ELECTROMAGNETIC ANALYSIS Methodology Vin(t) Vout(t) Vin(freq)  (freq)  (freq) Zc(freq) Matched Load Impedances Chain Matrix Vout(freq) F.F.T. -1 + * F.F.T = Fast Fourier Transform F.F.T.

11 ELECTROMAGNETIC ANALYSIS Application Interconnection geometry and environment 0.8  m M5 0.8  m 2.4  m M5 7.3  m passivation SiO2 Si bulk 7  cm 500  m 2.4  m M5 7.3  m passivation SiO2 2 nd configuration 1 st configuration 3 rd configuration Metal 5 : W=1  m T= 1  m Aluminium or Copper

12 ELECTROMAGNETIC ANALYSIS Application Frequency behavior of the attenuation factors

13 ELECTROMAGNETIC ANALYSIS Application Frequency behavior of the phase factors

14 ELECTROMAGNETIC ANALYSIS Application Attenuation determination Traveling wave Attenuation value of the wave, for 10 GHz, versus interconnection length

15 Theoretical limits : We have determined  To determine x : comparison output signal between RC and RLCG models ELECTROMAGNETIC ANALYSIS Application

16 OUTLINE OF THE TALK Introduction Theoretical limits Electromagnetic analysis : - Methodology - Application Limits between RLC and RC models Illustration of the theoretical limits : - in frequency-domain - in time domain Conclusion

17 LIMIT BETWEEN RLC AND RC MODELS The RLCG line model deduced from the electromagnetic analysis :

18 These calculated values are used to build the distributed  RC model LIMIT BETWEEN RLC AND RC MODELS n cells COMPARISON BETWEEN : HSPICE simulations : RC model Electromagnetic analysis : RLC model

19 LIMIT BETWEEN RLC AND RC MODELS Waveform of input and output signals in the range of lengths with inductance effect

20 LIMIT BETWEEN RLC AND RC MODELS Waveform of input and output signals in the range of lengths with inductance effect

21 LIMIT BETWEEN RLC AND RC MODELS Attenuation determination : Limit : the amplitude of the reflected wave is sufficiently low to give the reflection effect negligible

22 OUTLINE OF THE TALK Illustration of the theoretical limits : - in frequency-domain - in time domain Theoretical limits : We have determined  x

23 ILLUSTRATION OF THEORETICAL LIMITS in the frequency-domain

24 Frequency Time domain ILLUSTRATION OF THEORETICAL LIMITS in the frequency-domain

25 ILLUSTRATION OF THEORETICAL LIMITS in the time-domain

26 OUTLINE OF THE TALK Introduction Theoretical limits Electromagnetic analysis : - Methodology - Application Limits between RLC and RC models Illustration of the theoretical limits : - in frequency-domain - in time domain Comparison with previous work Conclusion

27 COMPARISON WITH PREVIOUS WORK The two figures of merit can be combined into a two sided inequality that determines the range of the length of interconnect in which inductance effects are significant : « Figures of Merit to characterize the Importance of On-chip Inductance » DAC 98, June 1998 1 st configuration : R = 17300  /m C = 170 pF/m L = 490 nH/m G # 0 2 nd configuration : R = 17300  /m C = 63.6 pF/m L = 655 nH/m G # 0

28 COMPARISON WITH PREVIOUS WORK

29 COMPARISON WITH PREVIOUS WORK

30 CONCLUSION A full-wave electromagnetic analysis have been presented to build accurate interconnect models, including inductance effects. New limits for signal reflections due to inductance for on-chip interconnections have been proposed.

31 CONCLUSION These limits have been illustrated with typical interconnection geometries, for Al and Cu wires. This study shows evidence demonstrating that a range exists for which inductance effects cannot be neglected and requires a transmission line model.

32 CONCLUSION FUTURE WORK : Interconnect coupling : taking into account not only the coupling capacitance, but also the impact of inductance and mutual inductance.


Download ppt "THEORETICAL LIMITS FOR SIGNAL REFLECTIONS DUE TO INDUCTANCE FOR ON-CHIP INTERCONNECTIONS F. Huret, E. Paleczny, P. Kennis F. Huret, E. Paleczny, P. Kennis."

Similar presentations


Ads by Google