Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Dipartimento di Scienze Molecolari Applicate ai Biosistemi Via Trentacoste 2 - Milano Alessandro Lascialfari Francesco Orsini (tecnico) Paolo Arosio.

Similar presentations


Presentation on theme: "1 Dipartimento di Scienze Molecolari Applicate ai Biosistemi Via Trentacoste 2 - Milano Alessandro Lascialfari Francesco Orsini (tecnico) Paolo Arosio."— Presentation transcript:

1 1 Dipartimento di Scienze Molecolari Applicate ai Biosistemi Via Trentacoste 2 - Milano Alessandro Lascialfari Francesco Orsini (tecnico) Paolo Arosio (post-doc) Dipartimento di Chimica ed Elettrochimica Marco Scavini Serena Cappelli (tecnico) Unità Università degli studi di Milano Altri partecipanti alla ricerca– Dipartimento di Fisica A. Volta - Università degli studi di Pavia Maurizio Corti Evrim Umut (dottorando) Andrea Capozzi (laureando, da fine aprile)

2 2 DISMAB - Via Trentacoste 2 Atomic force microscopy (AFM) * Atomic Force Microscopy / Scanning Tunneling Microscopy / Magnetic Force Microscopy - Autoprobe CP Research System - Veeco. Working temperature range 0-60°C. Cell for liquids, measurements in solution. * AFM Microscope with force spectroscopy facility, Nanoscope IIIA-Multimode, Veeco Wide-band Nuclear Magnetic Resonance (NMR) * Fourier transform Stelar Spinmaster spectrometer for NMR (also relaxometry), working in the range 5-70 MHz (with electromagnet, magnetic field 0-1.5 Tesla) and flux cryostat (3.8 < T < 350K) SMARTracer relaxometer by Stelar for NMR-Fast Field Cycling. Frequencies : 10 KHz < f < 10 MHz. Temperature : 150 < T < 300 K. Muon Spin Rotation International facilities PSI-Switzerland and ISIS-Didcot(UK) Experimental apparatuses In strict collaboration, Dept. of Physics, Pavia Wide-band Nuclear Magnetic Resonance (NMR) * Fourier transform Tecmag and Bruker spectrometers for NMR f-range 5-400 MHz (SC magnet-electromagnets 0-9 Tesla) * Cryostats for T-range 1.5 { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/534649/1/slides/slide_1.jpg", "name": "2 DISMAB - Via Trentacoste 2 Atomic force microscopy (AFM) * Atomic Force Microscopy / Scanning Tunneling Microscopy / Magnetic Force Microscopy - Autoprobe CP Research System - Veeco.", "description": "Working temperature range 0-60°C. Cell for liquids, measurements in solution. * AFM Microscope with force spectroscopy facility, Nanoscope IIIA-Multimode, Veeco Wide-band Nuclear Magnetic Resonance (NMR) * Fourier transform Stelar Spinmaster spectrometer for NMR (also relaxometry), working in the range 5-70 MHz (with electromagnet, magnetic field 0-1.5 Tesla) and flux cryostat (3.8 < T < 350K) SMARTracer relaxometer by Stelar for NMR-Fast Field Cycling. Frequencies : 10 KHz < f < 10 MHz. Temperature : 150 < T < 300 K. Muon Spin Rotation International facilities PSI-Switzerland and ISIS-Didcot(UK) Experimental apparatuses In strict collaboration, Dept. of Physics, Pavia Wide-band Nuclear Magnetic Resonance (NMR) * Fourier transform Tecmag and Bruker spectrometers for NMR f-range 5-400 MHz (SC magnet-electromagnets 0-9 Tesla) * Cryostats for T-range 1.5

3 3 Atomic Force Microscopy technique Multimode - Nanoscope 3d AFM (Veeco). Working temperature range 0-60 °C. Liquid cell for measurements in solution. PicoForce modulus for force spectroscopy measurements AutoProbe CP Research AFM (Veeco). Working temperature range 0-60 °C. Liquid cell for measurements in solution.

4 4 Nuclear Magnetic Resonance (NMR) technique Smartracer relaxometer 10 kHz { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/534649/1/slides/slide_3.jpg", "name": "4 Nuclear Magnetic Resonance (NMR) technique Smartracer relaxometer 10 kHz

5 5 Nuclear Magnetic Resonance NMR is a spectroscopic technique : Resonant Resonant ( 0 = B 0 e B 1 << B 0 ) Microscopic i.e. local probe Microscopic i.e. local probe (it studies the magnetic/electrical interactions between nuclei, atoms and molecules) radiofrequency At radiofrequency (0.01-1000 MHz) solid and liquid state Physics, Chemistry, pharmacological and bio-medical world Its widely used in solid and liquid state Physics, Chemistry, pharmacological and bio-medical world From 1975 it is an laternative to TAC; now also better for many applications does not use ionizing radiations It does not use ionizing radiations NMR is a spectroscopic technique : Resonant Resonant ( 0 = B 0 e B 1 << B 0 ) Microscopic i.e. local probe Microscopic i.e. local probe (it studies the magnetic/electrical interactions between nuclei, atoms and molecules) radiofrequency At radiofrequency (0.01-1000 MHz) solid and liquid state Physics, Chemistry, pharmacological and bio-medical world Its widely used in solid and liquid state Physics, Chemistry, pharmacological and bio-medical world From 1975 it is an laternative to TAC; now also better for many applications does not use ionizing radiations It does not use ionizing radiations

6 6 Nuclear Magnetic Resonance APPARATUS A static magnetic field A rf magnetic field Electronics Cryogenics EXPERIMENTAL PARAMETERS 3 main parameters: spectrum nuclear spin-spin relaxation time T 2 nuclear spin-lattice relaxation time T 1 LOCAL PROBE Nuclei are local probes sensitive to local hyperfine interactions Local spin dynamics (mainly T 1 and T 2 ) and spin distribution (mainly spectra) can be studied In MRI and relaxometry, sensitivity to spin dynamics and molecular motion APPARATUS A static magnetic field A rf magnetic field Electronics Cryogenics EXPERIMENTAL PARAMETERS 3 main parameters: spectrum nuclear spin-spin relaxation time T 2 nuclear spin-lattice relaxation time T 1 LOCAL PROBE Nuclei are local probes sensitive to local hyperfine interactions Local spin dynamics (mainly T 1 and T 2 ) and spin distribution (mainly spectra) can be studied In MRI and relaxometry, sensitivity to spin dynamics and molecular motion Nuclei (T 2n ) Electrons (T 2e ) Phonons (lattice) T 1n T 1e

7 7 Nuclear Magnetic Resonance : statics i.e. spectra Examples High-resolution NMR (not our group) High-resolution NMR (not our group) Wide-band NMR NMR spectra : sensitive to local magnetic field i.e. useful to estimate local field created by e.g. electrons NMR spectra : sensitive to local magnetic field i.e. useful to estimate local field created by e.g. electrons

8 8 NMR : spin dynamics i.e. relaxation rates NMR relaxation rates : sensitive to local electron spin dynamics through hyperfine nuclei-electron interaction NMR relaxation rates : sensitive to local electron spin dynamics through hyperfine nuclei-electron interaction Spin dynamics vs T at different constant fields Spin dynamics vs T at different constant fields Spin dynamics vs H at room temperature Spin dynamics vs H at room temperature

9 9 MUSR : spin dynamics through a different local probe MUSR relaxation rates : sensitive to local electron spin dynamics through hyperfine muon-electron interaction MUSR relaxation rates : sensitive to local electron spin dynamics through hyperfine muon-electron interaction Typical muon polarization behaviour Polarization can be studied vs T and H

10 10 Magnetic Resonance Imaging MRI Timeline 1946 MR phenomenon - Bloch & Purcell 1952 Nobel Prize - Bloch & Purcell 1950-70 NMR developed as analytical tool 1972 Computerized Tomography 1973 Backprojection MRI - Lauterbur 1975 Fourier Imaging - Ernst 1977 Echo-planar imaging - Mansfield 1980 FT MRI demonstrated - Edelstein 1986 Gradient Echo Imaging - NMR Microscope 1987 MR Angiography - Dumoulin 1991 Nobel Prize - Ernst 1992 Functional MRI 1994 Hyperpolarized 129 Xe Imaging 2003 Nobel Prize - Lauterbur & Mansfield Pavia apparatus

11 11 Magnetic Nanoparticles in Theranostics Magnetic Nanoparticles in Theranostics : Research (I) :magnetic nanoparticles in biomedicine Diagnostics : MRI CA, fluorescence Therapy :Magnetothermia Antibody Magnetic nucleus Biocompatibleshell Fluorescentmolecule Drug MolecularImagingMolecularImaging

12 Research (II) :Molecular nanomagnets SMM : finite number N of magnetic centers [e.g. Cr(III), Fe(III)], Single molecule behaviour (very weak intermolecular interaction), AF or F interaction Non magnetic S=0 or low-spin, high-spin ground state Single molecule of Cr7Fe Slowly relaxing CoPhOMe NANOWIRES SCM : magnetic chains with weak intrmolecular interactions and metallic/rare-earth ions alternating to radical groups slow relaxation of M ( NANOWIRES ), frustration, peculiar magnetic phases SIM : single rare-earth ions very diluted in the lattice. Good systems for study of quantum tunneling of magnetization (electro-nuclear coupled levels) Crystal structure p-NO 2.C 6 F 4 CNSSN

13 Role in the project NMR and MUSR Spectra Relaxation rates NMR and MUSR Spectra Relaxation rates Electron spin dynamics Electron spin dynamics Effects of plasmons/magnetoplasmons MRI Contrast agents efficiency (r 1, r 2 ) Effects of plasmons/magnetoplasmons MRI Contrast agents efficiency (r 1, r 2 ) Correlation with magnetic and plasmonic properties

14 Requests for samples NMR Possibly 150/200 mg or more of powders NMR-MRI Solution with known magnetic ion concentration Ideal concentration : 0.1-3 mg/ml of magn. center MUSR 500 mg or more of powders NMR Possibly 150/200 mg or more of powders NMR-MRI Solution with known magnetic ion concentration Ideal concentration : 0.1-3 mg/ml of magn. center MUSR 500 mg or more of powders

15 15 Projects (others : C. Lenardi, F. Orsini) FIRB Investigation of protein structure and function by AFM and physiological studies (ending) EU FP7 - NANOTHER Integration of novel NANOparticle based technology for THERapeutics and diagnosis of different types of cancer EU FP6 - MAGMANet Molecular Approach to Nanomagnets and Multifunctional Materials (ending) Fondazione Cariplo Processi di funzionalizzazione di polimeri per la modifica della biocompatibilità e delladesione di proteine (ending) Fondazione Cariplo Progettazione di nuovi biosensori magnetici per l'applicazione in scienze della salute e ambientali (ending) Main collaborations and projects Currently active main collaborations (others : C. Lenardi, F. Orsini) LOCAL, NATIONAL, INTERNATIONAL, INDUSTRIES DISMAB, University of Milano (Italy), Prof. V.F. Sacchi, Dr. P. Perego, Dr. M. Castagna Dept. Pharmacological Sciences, University of Milano, Prof. R. Paoletti, Prof. E.Tremoli, Dr.U.Guerrini, Dr.G.Sironi Dept. Chem. And Electrochem., University of Milano, Dr. M. Scavini AFFILIATIONS3 CNR-INFM, Modena (Italy) – AFFILIATION – Prof. M. Affronte Dept. Physics A. Volta – University of Pavia (Italy) – F. Borsa, M. Corti, P. Carretta, A. Rigamonti, S. Sanna Dept. Chemistry – University of Firenze (Italy) – D. Gatteschi, A. Caneschi, C. Sangregorio, R. Sessoli Dept. Chemistry – University of Cagliari (Italy) – M.F. Casula Dept. Physics, University of Parma (Italy), Dr. L. Romano, Prof. G. Amoretti, Prof. P. Santini, Dr. S. Carretta National Nanotechnology Laboratory, CNR-INFM, Lecce (Italy), Dr. T. Pellegrino Dept. Physics – University of Firenze, Firenze (Italy) – Prof. A. Rettori Dept. Physics, University of Milano Bicocca, Milano (Italy), gruppo prof. C. Riccardi Dept. Chemistry, Manchester University (UK), prof. R. Winpenny Dept. Physics, University of Zaragoza (Spain), Prof. F. Palacio e Dr. A. Millan Dept. Chemistry, University of Valencia (Spain), prof. E. Coronado Department of Physics, Boston College (USA), Prof. M. J. Graf Inorganic Chemistry Department, University of Bucarest (Romania), prof. M. Andruh CNRS and University of Montpellier (France), Dr. J. Larionova, Dr. Y. Guari Centro Ricerche Colorobbia, Vinci (FI) (Italia), Dr. G. Baldi, Dr. D. Bonacchi

16 16 MAGNETISM MAGNETISM: Scientific fields of interest MAGMANet (Nanother)

17 17 Core (Fe 3 O 4 +Fe 2 O 3 ) Coating (dextran...) Small Particle of Iron Oxide ( >20 nm ) SPIO Core (Fe 3 O 4 +Fe 2 O 3 ) USPIO UltraSmall Particle of Iron Oxide ( < 15 nm ) Superparamagnetic MRI-contrast agents : a scheme Coating (dextran...) Problems : low reproducibility, unknown mixing of ferrites, not-controlled microscopic chemico-physical no real control on the efficacy properties no real control on the efficacy Problems : low reproducibility, unknown mixing of ferrites, not-controlled microscopic chemico-physical no real control on the efficacy properties no real control on the efficacy

18 18 Magnetic field biosensors IgG BSA AbIgG-c-Biotin Streptavidin Fe 2 O 3 -c-PMA-c-Biotin ppAA Plasma Deposited Poly Acrylic Acid (ppAA) [1] Adsorption of human IgG Blocking of the unreacted surface groups by BSA Reaction with biotinated Ab-IgG molecules at different concentrations Absorption of streptavidin Absorption of biotinated modified γ-Fe 2 O 3 superparamagnetic nanoparticles [2] Plasma Deposited Poly Acrylic Acid (ppAA) [1] Adsorption of human IgG Blocking of the unreacted surface groups by BSA Reaction with biotinated Ab-IgG molecules at different concentrations Absorption of streptavidin Absorption of biotinated modified γ-Fe 2 O 3 superparamagnetic nanoparticles [2] Technique of detection : SQUID. It uses the presence of magnetic nanoparticles and the labelling of biosensors Technique of detection : SQUID. It uses the presence of magnetic nanoparticles and the labelling of biosensors They detect protein-antiprotein interaction They detect protein-antiprotein interaction

19 19 Magnetic field biosensors Hydrogel of Agarose (1%) directly prepared in the glass tube for NMR measurements Diffusion of biotinated modified γ-Fe 2 O 3 superparamagnetic nanoparticles with mild shaking Diffusion of streptavidin <= WORK IN PROGRESS!!! Hydrogel of Agarose (1%) directly prepared in the glass tube for NMR measurements Diffusion of biotinated modified γ-Fe 2 O 3 superparamagnetic nanoparticles with mild shaking Diffusion of streptavidin <= WORK IN PROGRESS!!! Technique of detection : NMR. It uses the presence of magnetic nanoparticles and the labelling of biosensors Technique of detection : NMR. It uses the presence of magnetic nanoparticles and the labelling of biosensors They detect protein-antiprotein interaction They detect protein-antiprotein interaction Agarose Fe 2 O 3 -c-PMA-c-Biotin

20 Very recent studies SMM SMM : distribution of magnetic moment, Cr7Fe (NMR, ) – heterometallic ring S T =1/2 distribution of magnetic moment, correlation function correlation function basic exchange interactions Dimers (NMR, ) basic exchange interactions resonant phonon trapping Ni10 (NMR, ) resonant phonon trapping single molecule paramagnet FeCu6, CoCu6 (NMR, ) - S T =1/2 system single molecule paramagnet transitions to higher S T states Fe4 (MUSR, ) - high-spin system S T =5 transitions to higher S T states SCM SCM : Gd-based chains (NMR) peculiar phase transitions (Villains conjecture) (Villains conjecture) two mechanisms of relaxation, Co or Dy-based chains (NMR, MUSR) – slowly relaxing two mechanisms of relaxation, size effects size effects SIM spin dynamics and tunneling SIM : LiYF 4 :Ho (MUSR) spin dynamics and tunneling

21 21 SUPERCONDUCTORS Cables, wires Magnets (MRI !!) Repulsion of magnetic field field : Meissner effect Zero resistivity Zero resistivity below a critical T=T c Magnetic Levitation train High-T c SC

22 22 Superconducting fluctuations T dia T c (0)T c (H) exact solution [ Theory with exact solution : Prange (1970), but no field quenching of fluctuating pairs ] H T >> T C T T C M dia dia H 1/2 …..and magnetization curves First experiments ( Gollub, Tinkham et al.) in metals evidence the breakdown of a description which neglects the effect of the field in suppressing the fluctuating pairs, but only from M(T) curves. Susceptibility (already subtracted of Pauli term)……….. SF

23 23 SOME RECENT PUBLICATIONS CA A.Figuerola, A. Fiore, R. Di Corato, A. Falqui, C. Giannini, E. Micotti,A.Lascialfari, M. Corti, R. Cingolani, T. Pellegrino, P. D. Cozzoli and L.Manna. J. Am. Chem. Soc. 130, 1477 (2008) M. Corti, A. Lascialfari, M. Marinone, A. Masotti, E. Micotti, F. Orsini, G. Ortaggi, G. Poletti, C. Innocenti, C. Sangregorio, J. Magn. Magn. Mater. 320, e316 (2008) M. Corti, A. Lascialfari, E. Micotti, A. Castellano, M. Donativi, A. Quarta, P.D. Cozzoli, L. Manna, T. Pellegrino, C. Sangregorio, J. Magn. Magn. Mater. 320, e320 (2008) A Boni, M Marinone, C Innocenti, C Sangregorio, M Corti, A Lascialfari, M Mariani, F Orsini, G Poletti and M F Casula, J. Phys. D: Appl. Phys. 41, 134021 (2008) Y. Guari, J. Larionova, M. Corti, A. Lascialfari, M. Marinone, G. Poletti, K. Molvinger and C. Guérin, Dalton Trans. 28, 3658 (2008), DOI: 10.1039/b808221a 2) A.Masotti, A. Pitta, G. Ortaggi, M. Corti, C. Innocenti, A. Lascialfari, M. Marinone, P. Marzola, A. Daducci, A. Sbarbati, E. Micotti, F. Orsini, G. Poletti, C. Sangregorio, Magn Reson Mater Phy 22, 77 (2009) P. Sánchez, E. Valero, N.Gálvez, J. M. Domínguez-Vera, M. Marinone, G. Poletti, M. Corti and A. Lascialfari, Dalton Transactions, 800-804 (2009) L. Lartigue, K. Oumzil, Y. Guari, J. Larionova, C. GueLrin, J.-L. Montero, V. Barragan-Montero, C. Sangregorio, A. Caneschi, C. Innocenti, T. Kalaivani, P. Arosio and A. Lascialfari, Organic Letters 11, 2992 (2009)SC E. Bernardi, A. Lascialfari, A. Rigamonti, and L. Romanó, Phys. Rev. B 77, 064502 (2008) S. Cagliero, A. Agostino, M. Mizanur Rahman Khan, M. Truccato, F. Orsini, M. Marinone, G. Poletti, A. Lascialfari, Appl Phys A 95, 479 (2009) A. Lascialfari, A. Rigamonti, E. Bernardi, M. Corti, A. Gauzzi, and J. C. Villegier, Phys. Rev. B 80, 104505 (2009)MNM F. Cinti, A. Rettori, M. G. Pini, M. Mariani, E. Micotti, A. Lascialfari, N. Papinutto, A. Amato, A. Caneschi, D. Gatteschi, and M. Affronte, Phys. Rev. Lett. 100, 057203 (2008) F. Borsa, Y. Furukawa, A. Lascialfari, Inorg. Chim. Acta 361, 3777 (2008) M.Belesi, E.Micotti, M. Mariani, F.Borsa, A. Lascialfari, S. Carretta, P. Santini, G. Amoretti, E. J. L. Mcinnes, I. S. Tidmarsh, J. Hawkett, Phys. Rev. Lett. 102, 177201 (2009)CA A.Figuerola, A. Fiore, R. Di Corato, A. Falqui, C. Giannini, E. Micotti,A.Lascialfari, M. Corti, R. Cingolani, T. Pellegrino, P. D. Cozzoli and L.Manna. J. Am. Chem. Soc. 130, 1477 (2008) M. Corti, A. Lascialfari, M. Marinone, A. Masotti, E. Micotti, F. Orsini, G. Ortaggi, G. Poletti, C. Innocenti, C. Sangregorio, J. Magn. Magn. Mater. 320, e316 (2008) M. Corti, A. Lascialfari, E. Micotti, A. Castellano, M. Donativi, A. Quarta, P.D. Cozzoli, L. Manna, T. Pellegrino, C. Sangregorio, J. Magn. Magn. Mater. 320, e320 (2008) A Boni, M Marinone, C Innocenti, C Sangregorio, M Corti, A Lascialfari, M Mariani, F Orsini, G Poletti and M F Casula, J. Phys. D: Appl. Phys. 41, 134021 (2008) Y. Guari, J. Larionova, M. Corti, A. Lascialfari, M. Marinone, G. Poletti, K. Molvinger and C. Guérin, Dalton Trans. 28, 3658 (2008), DOI: 10.1039/b808221a 2) A.Masotti, A. Pitta, G. Ortaggi, M. Corti, C. Innocenti, A. Lascialfari, M. Marinone, P. Marzola, A. Daducci, A. Sbarbati, E. Micotti, F. Orsini, G. Poletti, C. Sangregorio, Magn Reson Mater Phy 22, 77 (2009) P. Sánchez, E. Valero, N.Gálvez, J. M. Domínguez-Vera, M. Marinone, G. Poletti, M. Corti and A. Lascialfari, Dalton Transactions, 800-804 (2009) L. Lartigue, K. Oumzil, Y. Guari, J. Larionova, C. GueLrin, J.-L. Montero, V. Barragan-Montero, C. Sangregorio, A. Caneschi, C. Innocenti, T. Kalaivani, P. Arosio and A. Lascialfari, Organic Letters 11, 2992 (2009)SC E. Bernardi, A. Lascialfari, A. Rigamonti, and L. Romanó, Phys. Rev. B 77, 064502 (2008) S. Cagliero, A. Agostino, M. Mizanur Rahman Khan, M. Truccato, F. Orsini, M. Marinone, G. Poletti, A. Lascialfari, Appl Phys A 95, 479 (2009) A. Lascialfari, A. Rigamonti, E. Bernardi, M. Corti, A. Gauzzi, and J. C. Villegier, Phys. Rev. B 80, 104505 (2009)MNM F. Cinti, A. Rettori, M. G. Pini, M. Mariani, E. Micotti, A. Lascialfari, N. Papinutto, A. Amato, A. Caneschi, D. Gatteschi, and M. Affronte, Phys. Rev. Lett. 100, 057203 (2008) F. Borsa, Y. Furukawa, A. Lascialfari, Inorg. Chim. Acta 361, 3777 (2008) M.Belesi, E.Micotti, M. Mariani, F.Borsa, A. Lascialfari, S. Carretta, P. Santini, G. Amoretti, E. J. L. Mcinnes, I. S. Tidmarsh, J. Hawkett, Phys. Rev. Lett. 102, 177201 (2009)

24 24 Some general considerations about Magnetism in bio-medicine Techniques Imaging Magnetic Resonance Imaging (clinic and research) and NMR Magnetic nanoparticlesdrug delivery Magnetic nanoparticles joint to drug delivery /targeting, markers hyperthermia Magnetic hyperthermia Magnetic driven transport Magnetic driven transport of particles biosensors Magnetic biosensors detectors (NMR, SQUID,....) Magnetoencelography Magnetocardiography Magnetoencelography or neuromagnetism (SQUID detection of cerebral activity), Magnetocardiography (by means of SQUIDs) Materials (nanosized) Paramagnetic systems Ferrites (e.g. hard disk in computers) Superparamagnetic systems Molecular nano-particles

25 25 Aims of the work on MRI contrast agents To obtain MRI contrast agents based on superparamagnetic cores coated in different ways Samples with controllable size, shape, kind of magnetic ion of the core – narrow distributions of sizes – and coating/functionalization MOTIVATION a) reproducilibity of physical properties/performances ; b) optimization of the chemico-physical characteristics ; c) feedback to synthetic process to optimize the performances / study role of different parameters Systematic study of nuclear relaxivity d) Systematic study of nuclear relaxivity (the efficiency) as a function of the core dimensions, shape, coating, bulk anisotropy, kind of magnetic ion Model e) Model for the dependence of the nuclear relaxivities of novel contrast agents on anisotropy and molecular reorientation Multifunctionality f) Multifunctionality (molecular targeting, hyperthermia, fluorescence....) g) Low toxicity of Fe-oxides To obtain MRI contrast agents based on superparamagnetic cores coated in different ways Samples with controllable size, shape, kind of magnetic ion of the core – narrow distributions of sizes – and coating/functionalization MOTIVATION a) reproducilibity of physical properties/performances ; b) optimization of the chemico-physical characteristics ; c) feedback to synthetic process to optimize the performances / study role of different parameters Systematic study of nuclear relaxivity d) Systematic study of nuclear relaxivity (the efficiency) as a function of the core dimensions, shape, coating, bulk anisotropy, kind of magnetic ion Model e) Model for the dependence of the nuclear relaxivities of novel contrast agents on anisotropy and molecular reorientation Multifunctionality f) Multifunctionality (molecular targeting, hyperthermia, fluorescence....) g) Low toxicity of Fe-oxides

26 26 Highly-sensitive magnetic field biosensors (MFB) The scheme of MFB, molecular result of steps I + II : I) biomolecular probe attached to a (nanostructured and functionalized) surface II) complementary biomolecule labelled with a magnetic nanoparticle Examples : antibody-antigene, protein-protein, DNA-DNA, enzyme reactions, etc. APPLICATIONS Labelling to in vivo molecular interactions (imaging) Reagents in miniaturized microfluidic systems Affinity ligands for rapid and high-throughput magnetic readouts of arrays probes for Magnetic Force Microscopy Scientific/technological related problems, to be optimized : a)Nanostructuring (regular) of surface b)Functionalization of surface c)Magnetic labelling of biomolecule (choice of magnetic NP) (surface characteristics of NP allow covalent and stoichiomteris attachment of oligonucleotides, nucleic acids, small molecules, peptides, receptor ligands, proteins, antibodies,.....) d)Choice of system of magnetic detection (Hall s., NMR/MRI, SQUID,....) e)Development for applications The scheme of MFB, molecular result of steps I + II : I) biomolecular probe attached to a (nanostructured and functionalized) surface II) complementary biomolecule labelled with a magnetic nanoparticle Examples : antibody-antigene, protein-protein, DNA-DNA, enzyme reactions, etc. APPLICATIONS Labelling to in vivo molecular interactions (imaging) Reagents in miniaturized microfluidic systems Affinity ligands for rapid and high-throughput magnetic readouts of arrays probes for Magnetic Force Microscopy Scientific/technological related problems, to be optimized : a)Nanostructuring (regular) of surface b)Functionalization of surface c)Magnetic labelling of biomolecule (choice of magnetic NP) (surface characteristics of NP allow covalent and stoichiomteris attachment of oligonucleotides, nucleic acids, small molecules, peptides, receptor ligands, proteins, antibodies,.....) d)Choice of system of magnetic detection (Hall s., NMR/MRI, SQUID,....) e)Development for applications


Download ppt "1 Dipartimento di Scienze Molecolari Applicate ai Biosistemi Via Trentacoste 2 - Milano Alessandro Lascialfari Francesco Orsini (tecnico) Paolo Arosio."

Similar presentations


Ads by Google