Presentation is loading. Please wait.

Presentation is loading. Please wait.

9-2 Developing Formulas for Circles and Regular Polygons Warm Up

Similar presentations


Presentation on theme: "9-2 Developing Formulas for Circles and Regular Polygons Warm Up"— Presentation transcript:

1 9-2 Developing Formulas for Circles and Regular Polygons Warm Up
Lesson Presentation Lesson Quiz Holt Geometry

2 Lesson Quiz: Part I Find each measurement. 1. the height of the parallelogram, in which A = 182x2 mm2 h = 9.1x mm 2. the perimeter of a rectangle in which h = 8 in. and A = 28x in2 P = (16 + 7x) in.

3 Lesson Quiz: Part II 3. the area of the trapezoid A = 16.8x ft2 4. the base of a triangle in which h = 8 cm and A = (12x + 8) cm2 b = (3x + 2) cm 5. the area of the rhombus A = 1080 m2

4 Lesson Quiz: Part III 6. The wallpaper pattern shown is a rectangle with a base of 4 in. and a height of 3 in. Use the grid to find the area of the shaded kite. A = 3 in2

5 Warm Up Find the unknown side lengths in each special right triangle.
1. a 30°-60°-90° triangle with hypotenuse 2 ft 2. a 45°-45°-90° triangle with leg length 4 in. 3. a 30°-60°-90° triangle with longer leg length 3m

6 Objectives Develop and apply the formulas for the area and circumference of a circle. Develop and apply the formula for the area of a regular polygon.

7 Vocabulary circle center of a circle center of a regular polygon
apothem central angle of a regular polygon

8 A circle is the locus of points in a plane that are a fixed distance from a point called the center of the circle. A circle is named by the symbol  and its center. A has radius r = AB and diameter d = CD. The irrational number  is defined as the ratio of the circumference C to the diameter d, or Solving for C gives the formula C = d. Also d = 2r, so C = 2r.

9 You can use the circumference of a circle to find its area
You can use the circumference of a circle to find its area. Divide the circle and rearrange the pieces to make a shape that resembles a parallelogram. The base of the parallelogram is about half the circumference, or r, and the height is close to the radius r. So A   r · r =  r2. The more pieces you divide the circle into, the more accurate the estimate will be.

10

11 Example 1A: Finding Measurements of Circles
Find the area of K in terms of . A = r2 Area of a circle. Divide the diameter by 2 to find the radius, 3. A = (3)2 A = 9 in2 Simplify.

12 Example 1B: Finding Measurements of Circles
Find the radius of J if the circumference is (65x + 14) m. C = 2r Circumference of a circle (65x + 14) = 2r Substitute (65x + 14) for C. r = (32.5x + 7) m Divide both sides by 2.

13 Example 1C: Finding Measurements of Circles
Find the circumference of M if the area is 25 x2 ft2 Step 1 Use the given area to solve for r. A = r2 Area of a circle 25x2 = r2 Substitute 25x2 for A. 25x2 = r2 Divide both sides by . Take the square root of both sides. 5x = r

14 Example 1C Continued Step 2 Use the value of r to find the circumference. C = 2r C = 2(5x) Substitute 5x for r. C = 10x ft Simplify.

15 Check It Out! Example 1 Find the area of A in terms of  in which C = (4x – 6) m. A = r2 Area of a circle. Divide the diameter by 2 to find the radius, 2x – 3. A = (2x – 3)2 m A = (4x2 – 12x + 9) m2 Simplify.

16 Always wait until the last step to round.
The  key gives the best possible approximation for  on your calculator. Always wait until the last step to round. Helpful Hint

17 Example 2: Cooking Application
A pizza-making kit contains three circular baking stones with diameters 24 cm, 36 cm, and 48 cm. Find the area of each stone. Round to the nearest tenth. 24 cm diameter 36 cm diameter 48 cm diameter A = (12)2 A = (18)2 A = (24)2 ≈ cm2 ≈ cm2 ≈ cm2

18 Check It Out! Example 2 A drum kit contains three drums with diameters of 10 in., 12 in., and 14 in. Find the circumference of each drum. 10 in. diameter in. diameter in. diameter C = d C = d C = d C = (10) C = (12) C = (14) C = 31.4 in. C = 37.7 in. C = 44.0 in.

19 The center of a regular polygon is equidistant from the vertices
The center of a regular polygon is equidistant from the vertices. The apothem is the distance from the center to a side. A central angle of a regular polygon has its vertex at the center, and its sides pass through consecutive vertices. Each central angle measure of a regular n-gon is

20 Regular pentagon DEFGH has a center C, apothem BC, and central angle DCE.

21 To find the area of a regular n-gon with side length s and apothem a, divide it into n congruent isosceles triangles. area of each triangle: total area of the polygon: The perimeter is P = ns.

22

23 Example 3A: Finding the Area of a Regular Polygon
Find the area of regular heptagon with side length 2 ft to the nearest tenth. Step 1 Draw the heptagon. Draw an isosceles triangle with its vertex at the center of the heptagon. The central angle is . Draw a segment that bisects the central angle and the side of the polygon to form a right triangle.

24 Step 2 Use the tangent ratio to find the apothem.
Example 3A Continued Step 2 Use the tangent ratio to find the apothem. The tangent of an angle is opp. leg adj. leg Solve for a. a ≈ but they don’t want us To round until the last step

25 Example 3A Continued Step 3 Use the apothem and the given side length to find the area. Area of a regular polygon The perimeter is 2(7) = 14ft. Simplify. Round to the nearest tenth. A  14.5 ft2

26 The tangent of an angle in a right triangle is the ratio of the opposite leg length to the adjacent leg length. See page 525. Remember!

27 Example 3B: Finding the Area of a Regular Polygon
Find the area of a regular dodecagon with side length 5 cm to the nearest tenth. Step 1 Draw the dodecagon. Draw an isosceles triangle with its vertex at the center of the dodecagon. The central angle is Draw a segment that bisects the central angle and the side of the polygon to form a right triangle.

28 Example 3B Continued Step 2 Use the tangent ratio to find the apothem. The tangent of an angle is opp. leg adj. leg Solve for a.

29 Example 3B Continued Step 3 Use the apothem and the given side length to find the area. Area of a regular polygon The perimeter is 5(12) = 60 ft. Simplify. Round to the nearest tenth. A  cm2

30 Check It Out! Example 3 Find the area of a regular octagon with a side length of 4 cm. Step 1 Draw the octagon. Draw an isosceles triangle with its vertex at the center of the octagon. The central angle is Draw a segment that bisects the central angle and the side of the polygon to form a right triangle.

31 Check It Out! Example 3 Continued
Step 2 Use the tangent ratio to find the apothem The tangent of an angle is opp. leg adj. leg Solve for a.

32 Check It Out! Example 3 Continued
Step 3 Use the apothem and the given side length to find the area. Area of a regular polygon The perimeter is 4(8) = 32cm. Simplify. Round to the nearest tenth. A ≈ 77.3 cm2

33 Lesson Quiz: Part I Find each measurement. 1. the area of D in terms of  A = 49 ft2 2. the circumference of T in which A = 16 mm2 C = 8 mm

34 Lesson Quiz: Part II Find each measurement. 3. Speakers come in diameters of 4 in., 9 in., and 16 in. Find the area of each speaker to the nearest tenth. A1 ≈ 12.6 in2 ; A2 ≈ 63.6 in2 ; A3 ≈ in2 Find the area of each regular polygon to the nearest tenth. 4. a regular nonagon with side length 8 cm A ≈ cm2 5. a regular octagon with side length 9 ft A ≈ ft2

35


Download ppt "9-2 Developing Formulas for Circles and Regular Polygons Warm Up"

Similar presentations


Ads by Google