Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 7 The Quantum- Mechanical Model of the Atom 2007, Prentice Hall Chemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro Roy Kennedy Massachusetts.

Similar presentations


Presentation on theme: "Chapter 7 The Quantum- Mechanical Model of the Atom 2007, Prentice Hall Chemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro Roy Kennedy Massachusetts."— Presentation transcript:

1 Chapter 7 The Quantum- Mechanical Model of the Atom 2007, Prentice Hall Chemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro Roy Kennedy Massachusetts Bay Community College Wellesley Hills, MA

2 Electron Energy electron energy and position are complimentary because KE = ½mv 2 for an electron with a given energy, the best we can do is describe a region in the atom of high probability of finding it – called an orbital a probability distribution map of a region where the electron is likely to be found distance vs.  2 many of the properties of atoms are related to the energies of the electrons Tro, Chemistry: A Molecular Approach2

3 Wave Function,  calculations show that the size, shape and orientation in space of an orbital are determined be three integer terms in the wave function added to quantize the energy of the electron these integers are called quantum numbers principal quantum number, n angular momentum quantum number, l magnetic quantum number, m l Tro, Chemistry: A Molecular Approach3

4 Principal Quantum Number, n characterizes the energy of the electron in a particular orbital corresponds to Bohr’s energy level n can be any integer  1 the larger the value of n, the more energy the orbital has energies are defined as being negative an electron would have E = 0 when it just escapes the atom the larger the value of n, the larger the orbital as n gets larger, the amount of energy between orbitals gets smaller Tro, Chemistry: A Molecular Approach4 for an electron in H

5 Principal Energy Levels in Hydrogen Tro, Chemistry: A Molecular Approach5

6 Electron Transitions in order to transition to a higher energy state, the electron must gain the correct amount of energy corresponding to the difference in energy between the final and initial states electrons in high energy states are unstable and tend to lose energy and transition to lower energy states energy released as a photon of light each line in the emission spectrum corresponds to the difference in energy between two energy states 6

7 Predicting the Spectrum of Hydrogen the wavelengths of lines in the emission spectrum of hydrogen can be predicted by calculating the difference in energy between any two states for an electron in energy state n, there are (n – 1) energy states it can transition to, therefore (n – 1) lines it can generate both the Bohr and Quantum Mechanical Models can predict these lines very accurately Tro, Chemistry: A Molecular Approach7

8 Hydrogen Energy Transitions 8

9 Solve: Calculate the wavelength of light emitted when the hydrogen electron transitions from n = 2 to n = 1 E=hc/  E n = -2.18 x 10 -18 J (1/n 2 ) Concept Plan: Relationships: n i = 2, n f = 1  m Given: Find: n i, n f  E atom E photon  E atom = -E photon E photon = -(-1.64 x 10 -18 J) = 1.64 x 10 -18 J the unit is correct, the wavelength is in the UV, which is appropriate because more energy than 3→2 (in the visible) Check:

10 Probability & Radial Distribution Functions  2 is the probability density the probability of finding an electron at a particular point in space for s orbital maximum at the nucleus? decreases as you move away from the nucleus the Radial Distribution function represents the total probability at a certain distance from the nucleus maximum at most probable radius nodes in the functions are where the probability drops to 0 10

11 Probability Density Function Tro, Chemistry: A Molecular Approach11

12 Radial Distribution Function Tro, Chemistry: A Molecular Approach12

13 The Shapes of Atomic Orbitals the l quantum number primarily determines the shape of the orbital l can have integer values from 0 to (n – 1) each value of l is called by a particular letter that designates the shape of the orbital s orbitals are spherical p orbitals are like two balloons tied at the knots d orbitals are mainly like 4 balloons tied at the knot f orbitals are mainly like 8 balloons tied at the knot Tro, Chemistry: A Molecular Approach13

14 l = 0, the s orbital each principal energy state has 1 s orbital lowest energy orbital in a principal energy state spherical number of nodes = (n – 1) Tro, Chemistry: A Molecular Approach14

15 2s and 3s 15 2s n = 2, l = 0 3s n = 3, l = 0

16 l = 1, p orbitals each principal energy state above n = 1 has 3 p orbitals m l = -1, 0, +1 each of the 3 orbitals point along a different axis p x, p y, p z 2 nd lowest energy orbitals in a principal energy state two-lobed node at the nucleus, total of n nodes Tro, Chemistry: A Molecular Approach16

17 p orbitals Tro, Chemistry: A Molecular Approach17

18 l = 2, d orbitals each principal energy state above n = 2 has 5 d orbitals m l = -2, -1, 0, +1, +2 4 of the 5 orbitals are aligned in a different plane the fifth is aligned with the z axis, d z squared d xy, d yz, d xz, d x squared – y squared 3 rd lowest energy orbitals in a principal energy state mainly 4-lobed one is two-lobed with a toroid planar nodes higher principal levels also have spherical nodes Tro, Chemistry: A Molecular Approach18

19 d orbitals Tro, Chemistry: A Molecular Approach19

20 l = 3, f orbitals each principal energy state above n = 3 has 7 d orbitals m l = -3, -2, -1, 0, +1, +2, +3 4 th lowest energy orbitals in a principal energy state mainly 8-lobed some 2-lobed with a toroid planar nodes higher principal levels also have spherical nodes Tro, Chemistry: A Molecular Approach20

21 f orbitals Tro, Chemistry: A Molecular Approach21

22 Why are Atoms Spherical? Tro, Chemistry: A Molecular Approach22

23 Energy Shells and Subshells Tro, Chemistry: A Molecular Approach23


Download ppt "Chapter 7 The Quantum- Mechanical Model of the Atom 2007, Prentice Hall Chemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro Roy Kennedy Massachusetts."

Similar presentations


Ads by Google