Download presentation

Published byRandolf Morgan Modified over 6 years ago

1
**To solve a multi-step equation, you may have to simplify the equation first by combining like terms.**

2
**Additional Example 1: Solving Equations That Contain Like Terms**

Solve. 8x x – 2 = 37 11x + 4 = 37 Combine like terms. – 4 – 4 Subtract 4 from both sides. 11x = 33 33 11 11x = Divide both sides by 11. x = 3

3
**Additional Example 1 Continued**

Check 8x x – 2 = 37 8(3) (3) – 2 = 37 ? Substitute 3 for x. – 2 = 37 ? 37 = 37 ?

4
Check It Out: Example 1 Solve. 9x x – 2 = 42 13x + 3 = 42 Combine like terms. – 3 – 3 Subtract 3 from both sides. 13x = 39 39 13 13x = Divide both sides by 13. x = 3

5
**Check It Out: Example 1 Continued**

9x x – 2 = 42 9(3) (3) – 2 = 42 ? Substitute 3 for x. – 2 = 42 ? 42 = 42 ?

6
Check It Out: Example 2A Solve. + = – 3n 4 5 4 1 4 Multiply both sides by 4 to clear fractions, and then solve. ( ) ( ) 5 4 –1 3n = 4 ( ) ( ) ( ) 3n 4 5 –1 = 4 Distributive Property. 3n + 5 = –1

7
**Check It Out: Example 2A Continued**

– 5 – Subtract 5 from both sides. 3n = –6 3n 3 –6 = Divide both sides by 3. n = –2

8
**Lesson Quiz Solve. 6x + 3x – x + 9 = 33 + = x = 3 x = 28**

+ = 3. Linda is paid double her normal hourly rate for each hour she works over 40 hours in a week. Last week she worked 52 hours and earned $544. What is her hourly rate? x = 3 5 8 x 8 33 8 x = 28 $8.50

9
**Answers 1 - 7 x= -2.2 2. w = 2.75 x = 11 b = -7 5. m = 1 6. x = 25**

10
**Additional Example 1A: Solving Equations with Variables on Both Sides**

Course 3 11-3 Solving Equations with Variables on Both Sides Additional Example 1A: Solving Equations with Variables on Both Sides Solve. 4x + 6 = x 4x + 6 = x – 4x – 4x Subtract 4x from both sides. 6 = –3x 6 –3 –3x = Divide both sides by –3. –2 = x

11
**Solving Equations with Variables on Both Sides**

Course 3 11-3 Solving Equations with Variables on Both Sides Check your solution by substituting the value back into the original equation. For example, 4(-2) + 6 = -2 or -2 = -2. Helpful Hint

12
**Additional Example 1B: Solving Equations with Variables on Both Sides**

Course 3 11-3 Solving Equations with Variables on Both Sides Additional Example 1B: Solving Equations with Variables on Both Sides Solve. 9b – 6 = 5b + 18 9b – 6 = 5b + 18 – 5b – 5b Subtract 5b from both sides. 4b – 6 = 18 Add 6 to both sides. 4b = 24 4b 4 24 = Divide both sides by 4. b = 6

13
**Solving Equations with Variables on Both Sides**

Course 3 11-3 Solving Equations with Variables on Both Sides Check It Out: Example 1A Solve. 5x + 8 = x 5x + 8 = x – 5x – 5x Subtract 5x from both sides. 8 = –4x 8 –4 –4x = Divide both sides by –4. –2 = x

14
**Solving Equations with Variables on Both Sides**

Course 3 11-3 Solving Equations with Variables on Both Sides Check It Out: Example 1B Solve. 3b – 2 = 2b + 12 3b – 2 = 2b + 12 – 2b – 2b Subtract 2b from both sides. b – 2 = Add 2 to both sides. b =

15
**Solving Equations with Variables on Both Sides**

Course 3 11-3 Solving Equations with Variables on Both Sides Additional Example 2A: Solving Multi-Step Equations with Variables on Both Sides Solve. 10z – 15 – 4z = 8 – 2z - 15 10z – 15 – 4z = 8 – 2z – 15 6z – 15 = –2z – 7 Combine like terms. + 2z z Add 2z to both sides. 8z – 15 = – 7 Add 15 to both sides. 8z = 8 8z 8 8 = Divide both sides by 8. z = 1

16
**Solving Equations with Variables on Both Sides**

Course 3 11-3 Solving Equations with Variables on Both Sides Check It Out: Example 2A Solve. 12z – 12 – 4z = 6 – 2z + 32 12z – 12 – 4z = 6 – 2z + 32 8z – 12 = –2z + 38 Combine like terms. + 2z z Add 2z to both sides. 10z – 12 = Add 12 to both sides. 10z = 50 10z 10 = Divide both sides by 10. z = 5

17
**Check It Out: Example 2B Continued**

Course 3 11-3 Solving Equations with Variables on Both Sides Check It Out: Example 2B Continued 26y + 18 = 24y – 18 – 24y – 24y Subtract 24y from both sides. 2y + 18 = – 18 – – 18 Subtract 18 from both sides. 2y = –36 –36 2 2y = Divide both sides by 2. y = –18

18
**Additional Example 3: Business Application**

Course 3 11-3 Solving Equations with Variables on Both Sides Additional Example 3: Business Application Daisy’s Flowers sell a rose bouquet for $39.95 plus $2.95 for every rose. A competing florist sells a similar bouquet for $26.00 plus $4.50 for every rose. Find the number of roses that would make both florist’s bouquets cost the same price.

19
**Additional Example 3 Continued**

Course 3 11-3 Solving Equations with Variables on Both Sides Additional Example 3 Continued Let r represent the price of one rose. r = r Subtract 2.95r from both sides. – 2.95r – 2.95r = r Subtract from both sides. – – 26.00 = r 13.95 1.55 1.55r 1.55 = Divide both sides by 1.55. 9 = r The two services would cost the same when using 9 roses.

20
**Insert Lesson Title Here**

Course 3 11-3 Solving Equations with Variables on Both Sides Insert Lesson Title Here Lesson Quiz Solve. 1. 4x + 16 = 2x 2. 8x – 3 = x x = x – 9 x = –8 x = 6 1 4 1 2 x = 36

21
**Answers 1 - 9 x = 9 2. k = 10.2 d = 2 4. a = -4 5. x = 3 6. d = ¾**

7. x = y = -2/5 9. x = 4

22
**Solving Two-Step Inequalities**

Course 3 11-5 Solving Two-Step Inequalities Warm Up Solve. 1. 6x + 36 = 2x 2. 4x – 13 = x 3. 5(x – 3) = 2x + 3 x = –9 x = –28 x = 6

23
**Additional Example 1A: Solving Two-Step Inequalities**

Course 3 11-5 Solving Two-Step Inequalities Additional Example 1A: Solving Two-Step Inequalities Solve and graph. 4x + 1 > 13 4x + 1 > 13 – 1 – 1 Subtract 1 from both sides. 4x > 12 4x 4 > 12 Divide both sides by 4. x > 3

24
**Solving Two-Step Inequalities**

Course 3 11-5 Solving Two-Step Inequalities If both sides of an inequality are multiplied or divided by a negative number, the inequality symbol must be reversed. Remember!

25
**Additional Example 1B: Solving Two-Step Inequalities**

Course 3 11-5 Solving Two-Step Inequalities Additional Example 1B: Solving Two-Step Inequalities Solve and graph. –9x + 7 25 –9x + 7 25 – 7 – 7 Subtract 7 from both sides. –9x 18 –9x –9 18 Divide each side by –9; change to . x –2

26
**Solving Two-Step Inequalities**

Course 3 11-5 Solving Two-Step Inequalities Check It Out: Example 1A Solve and graph. 5x + 2 > 12 5x + 2 > 12 – 2 – 2 Subtract 2 from both sides. 5x > 10 5x 5 > 10 Divide both sides by 5. x > 2

27
**Solving Two-Step Inequalities**

Course 3 11-5 Solving Two-Step Inequalities Check It Out: Example 1B –4x + 2 18 –4x + 2 18 – 2 – 2 Subtract 2 from both sides. –4x 16 –4x –4 16 Divide each side by –4; change to . x –4

28
**Check your Understanding**

Course 3 11-5 Solving Two-Step Inequalities Insert Lesson Title Here Check your Understanding Solve and graph. 1. 4x – 6 > 10 2. 7x + 9 < 3x – 15 3. w – 3w < 32 x > 4 x < –6 w > –16

Similar presentations

© 2021 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google