Download presentation

1
Geometry Trigonometric Ratios CONFIDENTIAL

2
**Find the geometric mean of each pair of a number.**

Warm Up Find the geometric mean of each pair of a number. 1) 3 and ) 6 and ) 8 and 32 CONFIDENTIAL

3
Trigonometric Ratios By the AA Similarity Postulate, a right triangle with a given acute angle is similar to every other right triangle with that same acute angle measure. So ∆ABC~∆DEF~∆XYZ, and BC/AC = EF/DF = YZ/XZ. These are trigonometric radios. A trigonometric ratio is a ratio of two sides of a right triangle. 32˚ 32˚ 32˚ CONFIDENTIAL

4
**Trigonometric Ratios DEFINITION SYMBOLS DIAGRAM**

The sine of an angle is the ratio of the length of the leg opposite the angle to the length of the hypotenuse. B c a A The cosine of an angle is the ratio of the length of the leg adjacent to the angle to the length of the hypotenuse. C b CONFIDENTIAL Next page

5
**DEFINITION SYMBOLS DIAGRAM**

The tangent of an angle is the ratio of the length of the leg opposite the angle to the length of the leg adjacent to the angle. B c a A C b CONFIDENTIAL

6
Trigonometric Ratios Write each trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth. R S T 13 12 5 sin R sin R = 12/ cos R cos R = 5/ tan R tan R = 5/ ~ ~ ~ ~ ~ ~ CONFIDENTIAL

7
Now you try! 1) Write each trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth. a. cos A b. tan B c. sin B CONFIDENTIAL

8
**Trigonometric Ratios in special Right Triangles**

Use a special right to write sin 60˚ as a fraction. Draw and label a 30˚ -60˚ -90˚∆. CONFIDENTIAL

9
**2) Use a special right triangle to write tan 45˚ as a fraction.**

Now you try! 2) Use a special right triangle to write tan 45˚ as a fraction. CONFIDENTIAL

10
**Calculating Trigonometric Ratios**

Use your calculator to find each trigonometric ratio. Round the nearest hundredth. A ) cos 76˚ B) sin 8˚ C) tan 82˚ cos76˚= 0.24 sin 8˚= 0.14 tan 82˚=7.12 CONFIDENTIAL

11
**Now you try! 3) Use your calculator to find each trigonometric ratio.**

Round to the nearest hundredth. a. tan 11˚ b. sin 62˚ c. cos 30˚ CONFIDENTIAL

12
**The hypotenuse is always the longest side of a right triangle**

The hypotenuse is always the longest side of a right triangle. So the denominator of a sine or cosine ratio is always greater than the numerator. Therefore the sine and cosine of an acute angle are always positive numbers less than 1. Since the tangent of an acute angle is the ratio of the lengths of the legs, it can have any value greater than 0. CONFIDENTIAL

13
**Trigonometric Ratios to Find Lengths**

Find each length. Round to the nearest hundredth. A) AB AB is adjacent to the given angle, /A. You are given BC, which is opposite /A. Since the adjacent and opposite legs are involved, use a tangent ratio. Write a trigonometric ratio. Substitute the given values. Multiply both sides by AB and divide by tan 41˚. Simplify the expression. Next page CONFIDENTIAL

14
**Write a trigonometric radio.**

B) MP MP is opposite the given angle, /N. You are given NP, which is the hypotenuse. Since the opposite side and hypotenuse are involved, use a sine radio. Write a trigonometric radio. Substitute the given values. Multiply both sides by 8.7 Simplify the expression. Next page CONFIDENTIAL

15
**Write a trigonometric ratio.**

C) YZ YZ is the hypotenuse. You are given XZ, which is adjacent to the given angle, /Z. Since the adjacent side and hypotenuse are involved, use a cosine ratio. Write a trigonometric ratio. Substitute the given values. Multiply both sides by YZ and divide by cos 38˚. Simplify the expression. CONFIDENTIAL

16
**4) Find each length. Round to the nearest hundredth**

NOW YOU TRY! 4) Find each length. Round to the nearest hundredth CONFIDENTIAL

17
**Problem Solving Application**

A contractor is building a wheelchair ramp for a doorway that is 1.2 ft above the ground. To meet ADA guidelines, the ramp will make an angle of 4.8˚ with the ground. To the nearest hundredth of a foot, what is the horizontal distance covered by the ramp? Make a sketch. The answer is BC. Write a trigonometric ratio. Substitute the given values. Multiply both sides by BC and divide by cos 4.8˚. Simplify the expression. CONFIDENTIAL

18
NOW YOU TRY! 5) Find AC, the length of the ramp in Example 5. to the nearest hundredth of a foot CONFIDENTIAL

19
**Now some practice problems for you!**

CONFIDENTIAL

20
Assessment Write each trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth. 1)sin C ) tan A ) cos A CONFIDENTIAL

21
**Use a special right triangle to write each trigonometric ratio as a fraction.**

4) cos 60˚ ) tan 30˚ ) sin 45˚ CONFIDENTIAL

22
**Use your calculator to find each trigonometric ratio**

Use your calculator to find each trigonometric ratio. Round to the nearest hundredth. 7) tan 67˚ ) sin 23˚ CONFIDENTIAL

23
**Find each length. Round to the nearest hundredth.**

AB CONFIDENTIAL

24
**Let’s review Trigonometric Ratios**

By the AA Similarity Postulate, a right triangle with a given acute angle is similar to every other right triangle with that same acute angle measure. So ∆ABC~∆DEF~∆CYZ, and BC/AC = EF/DF = YZ/XZ. These are trigonometric radios. A trigonometric ratio is a ratio of two sides of a right triangle. 32˚ 32˚ 32˚ CONFIDENTIAL

25
**Trigonometric Ratios DEFINITION SYMBOLS DIAGRAM**

The sine of an angle is the ratio of the length of the leg opposite the angle to the length of the hypotenuse. B c a A The cosine of an angle is the ratio of the length of the leg adjacent to the angle to the length of the hypotenuse. C b CONFIDENTIAL Next page

26
**DEFINITION SYMBOLS DIAGRAM**

The tangent of an angle is the ratio of the length of the leg opposite the angle to the length of the leg adjacent to the angle. B c a A C b CONFIDENTIAL

27
**Calculating Trigonometric Ratios**

Use your calculator to find each trigonometric ratio. Round the nearest hundredth. A cos 76˚ B sin 8˚ C tan 82˚ CONFIDENTIAL

28
**The hypotenuse is always the longest side of a right triangle**

The hypotenuse is always the longest side of a right triangle. So the denominator of a sine or cosine ratio is always greater than the numerator. Therefore the sine and cosine of an acute angle are always positive numbers less than 1. Since the tangent of an acute angle is the ratio of the lengths of the legs, it can have any value greater than 0. CONFIDENTIAL

29
**Trigonometric Ratios to Find Lengths**

Find each length. Round to the nearest hundredth. A. AB AB is adjacent to the given angle, /A. You are given BC, which is opposite /A. Since the adjacent and opposite legs are involved, use a tangent ratio. Write a trigonometric ratio. Substitute the given values. Multiply both sides by AB and divide by tan 41˚. Simplify the expression. CONFIDENTIAL

30
**Problem Solving Application**

A contractor is building a wheelchair ramp for a doorway that is 1.2 ft above the ground. To meet ADA guidelines, the ramp will make an angle of 4.8˚ with the ground. To the nearest hundredth of a foot, what is the horizontal distance covered by the ramp? Make a sketch. The answer is BC. Write a trigonometric ratio. Substitute the given values. Multiply both sides by BC and divide by cos 4.8˚. Simplify the expression. CONFIDENTIAL

31
**Trigonometric Ratios in special Right Triangles**

Use a special right to write sin 60˚ as a fraction. Draw and label a 30˚ -60˚ -90˚∆. CONFIDENTIAL

32
**You did a great job today!**

CONFIDENTIAL

Similar presentations

© 2023 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google