Presentation is loading. Please wait.

Presentation is loading. Please wait.

PHYS 30101 Quantum Mechanics PHYS 30101 Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)

Similar presentations


Presentation on theme: "PHYS 30101 Quantum Mechanics PHYS 30101 Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)"— Presentation transcript:

1 PHYS 30101 Quantum Mechanics PHYS 30101 Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10) j.billowes@manchester.ac.uk These slides at: http://nuclear.ph.man.ac.uk/~jb/phys30101 Lecture 16

2 Syllabus 1.Basics of quantum mechanics (QM) Postulate, operators, eigenvalues & eigenfunctions, orthogonality & completeness, time-dependent Schrödinger equation, probabilistic interpretation, compatibility of observables, the uncertainty principle. 2.1-D QM Bound states, potential barriers, tunnelling phenomena. 3.Orbital angular momentum Commutation relations, eigenvalues of L z and L 2, explicit forms of L z and L 2 in spherical polar coordinates, spherical harmonics Y l,m. 4.Spin Noncommutativity of spin operators, ladder operators, Dirac notation, Pauli spin matrices, the Stern-Gerlach experiment. 5.Addition of angular momentum Total angular momentum operators, eigenvalues and eigenfunctions of J z and J 2. 6.The hydrogen atom revisited Spin-orbit coupling, fine structure, Zeeman effect. 7.Perturbation theory First-order perturbation theory for energy levels. 8.Conceptual problems The EPR paradox, Bell’s inequalities.

3 4. Spin 4.1 Commutators, ladder operators, eigenfunctions, eigenvalues 4.2 Dirac notation (simple shorthand – useful for “spin” space) 4.3 Matrix representations in QM; Pauli spin matrices 4.4 Measurement of angular momentum components: the Stern-Gerlach apparatus

4 Recap: 4.3 Matrix representations in QM We can describe any function as a linear combination of our chosen set of eigenfunctions (our “basis”) Substitute in the eigenvalue equation for a general operator: Gives:

5 Recap: 4.3 Matrix representations in QM We can describe any function as a linear combination of our chosen set of eigenfunctions (our “basis”) Substitute in the eigenvalue equation for a general operator: Gives: Multiply from left and integrate: (We use ) And find: Exactly the rule for multiplying matrices! Equation (1)

6 Pauli Spin Matrices: 4.3.2 Matix representations of S x, S y, S z S x = ½ħ σ x ; S y = ½ħ σ y ; S z = ½ħ σ z

7 Matrix representation: Eigenvectors of S x, S y, S z Eigenfunctions of spin-1/2 operators 4.3.3 Example: description of spin=1 polarised along the x-axis In Dirac notation: is

8

9 4.4 Measurement of a spin component Magnetic moments (a) due to orbital angular momentum r e Electron in orbit produces a magnetic field (like bar magnet) and therefore has a magnetic dipole moment: μ l = g l l μ B μ B = eħ/2m e (the Bohr magneton) g l = -1 (gyromagnetic ratio or g-factor) l= 1, 2, 3… μ l = g l l μ B


Download ppt "PHYS 30101 Quantum Mechanics PHYS 30101 Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)"

Similar presentations


Ads by Google