Presentation is loading. Please wait.

Presentation is loading. Please wait.

What Energy Functions Can be Minimized Using Graph Cuts? Shai Bagon Advanced Topics in Computer Vision June 2010.

Similar presentations


Presentation on theme: "What Energy Functions Can be Minimized Using Graph Cuts? Shai Bagon Advanced Topics in Computer Vision June 2010."— Presentation transcript:

1 What Energy Functions Can be Minimized Using Graph Cuts? Shai Bagon Advanced Topics in Computer Vision June 2010

2 What is an Energy Function? E a number suggested solution For a given problem:Image Segmentation: 237-20 Useful Energy function: 1.Good solution  Low energy 2.Tractable  Can be minimized

3 Families of Functions or Outline F 2 submodular Non submodular F 3 Beyond F 3

4 Foreground Selection Let y i – color of i th pixel x i {0,1} BG/FG labels (variables) Given BG/FG scribbles: Pr(x i |y i ) =How likely each pixel to be FG/BG Pr(x m |x n ) =Adjacent pixels should have same label F 2 energy: E(x)=∑ i E i (x i )+∑ ij E ij (x i,x j ) xmxm xnxn xixi yiyi

5 Submodular Known concept from set-functions: E(x) = ∑ i E i (x i ) + ∑ ij E ij (x i, x j ), x i {0,1} 1CD 0AB xjxixjxi 01 E ij (x i,x j ): What does it mean? B+C-A-D ≥ 0

6 How to Minimize? E(x) = ∑ i E i (x i ) + ∑ ij E ij (x i, x j ), x i {0,1} Local “beliefs”: Data term Prior knowledge: Smoothness term F 2 submodular

7 Graph Partitioning A weighted graph G=( V E w ) Special Nodes: s t s-t cut: Cost of a cut: Nice property: 1:1 mapping s-t cut ↔ {0,1} |V|-2 w V E w ij s t    TjSi TSCut, ),( VTSTS TtSsVTVS  ,,,, 

8 s t Graph Partitioning - Energy E(x) = ∑ i E i (x i ) + ∑ ij E ij (x i, x j ) Graph Partitioning i j E j (1) D-C B+C-A-D E i (0) 1CD 0AB xjxixjxi 01 E ij (x i,x j ) C-A 00 D-C0 0 00 B+C-A-D0 = A +++ C-A

9 s t Graph Partitioning - Energy E(x) = ∑ i E i (x i ) + ∑ ij E ij (x i, x j ) Graph Partitioning i j E j (1) B+C-A-D E i (0) C-A D-C st cut  binary assignment cut cost  energy of assignment min cut  Energy min. B=E ij (0,1)

10 Recap F 2 submodular: E(x) = ∑ i E i (x i ) + ∑ ij E ij (x i, x j ) E ij (1,0)+E ij (0,1)≥E ij (0,0)+E ij (1,1) Mapping from energy to graph partition Min Energy = computing min-cut Global optimum in poly time for submodular functions!

11 Next… Multi-label F 2 E(x)=∑ i E i (x i ) + ∑ ij E ij (x i,x j ) s.t. x i {1,…,L} –Fusion moves: solving binary sub-problems –Applications to stereo, stitching, segmentation… ● Current labeling suggested labeling “Alpha expansion” = Fusion Solve Binary problem: x i =0 x i =1

12 Stereo matching see http://vision.middlebury.edu/stereo/http://vision.middlebury.edu/stereo/ Ground truth Pairwise MRF [Boykov et al. ‘01] slide by Carsten Rother, ICCV’09 Input:

13 Panoramic stitching slide by Carsten Rother, ICCV’09

14 Panoramic stitching slide by Pushmeet Kohli, ICCV’09

15 AutoCollage http://research.microsoft.com/en-us/um/cambridge/projects/autocollage/ [Rother et. al. Siggraph ‘05 ]

16 Next… Multi-label F 2 E(x)=∑ i E i (x i ) + ∑ ij E ij (x i,x j ) s.t. x i {1,…,L} –Fusion moves: solving binary sub-problems –Applications to stereo, stitching, segmentation… Non-submodular Beyond pair-wise interactions: F 3

17 Merging Regions input image regions (Ncuts) “edge” prob. pipi “weak” edge “strong” edge p i – prob. of boundary being edge GOAL: Find labeling x i {0,1} that max: i j min: Taking -log

18 Merging Regions Adding and subtracting the same number

19 Merging Regions Solving for edges: Consistency constraints: No “dangling” edge J x1x1 x2x2 x3x3 EJEJ 0000 1110 0110 001 λ wiwi xixi No longer pair-wise: F 3

20 Minimization trick Freedman D., Turek MW, Graph cuts with many pixel interactions: theory and applications to shape modeling. Image Vision Computing 2010

21 Merging Regions The resulting energy: + Pair-wise - Non submodular!

22 Quadratic Pseudo-Boolean Optimization s i j t ij Kolmogorov V., Carsten R., Minimizing non-submodular functions with graph cuts – a review. PAMI ’ 07

23 + All edges with positive capacities - No constraint Labeling rule: partial labeling s i j t ij Quadratic Pseudo-Boolean Optimization

24 Properties of partial labeling y: 1. Let z=FUSE(y,x)  E(z)≤E(x) 2. y is subset of optimal y* y is complete: 1. E submodular 2. Exists flipping (inference in trees) s i j t ij Quadratic Pseudo-Boolean Optimization

25 0????? rpqst 000?? 0010? rpqst rpqst QPBO: Probe Node p: 0 1 What can we say about variables? r -> is always 0 s -> is always equal to q t -> is 0 when q = 1 slide by Pushmeet Kohli, ICCV’09 QBPO - Probing

26 Probe nodes in an order until energy unchanged Simplified energy preserves global optimality and (sometimes) gives the global minimum slide by Pushmeet Kohli, ICCV’09 QBPO - Probing

27 Merging Regions Result using QPBO-P: Result regions (Ncuts)input image

28 Recap F 3 and more –Minimization trick Non submodular –QPBO approx. – partial labeling

29 Beyond F 3 … [Kohli et. al. CVPR ‘07, ‘08, PAMI ’08, IJCV ‘09]

30 Image Segmentation E(X) = ∑ c i x i + ∑ d ij |x i -x j | ii,j E: {0,1} n → R 0 → fg, 1 → bg n = number of pixels [Boykov and Jolly ‘ 01] [Blake et al. ‘04] [Rother et al.`04] Image Unary Cost Segmentation

31 P n Potts Potentials Patch Dictionary (Tree) C max  0 { 0 if x i = 0, i p C max otherwise h(X p ) = p [slide credits: Kohli]

32 P n Potts Potentials E(X) = ∑ c i x i + ∑ d ij |x i -x j | + ∑ h p (X p ) ii,j p p { 0 if x i = 0, i p C max otherwise h(X p ) = E: {0,1} n → R 0 → fg, 1 → bg n = number of pixels [slide credits: Kohli]

33 Image Segmentation E(X) = ∑ c i x i + ∑ d ij |x i -x j | + ∑ h p (X p ) ii,j ImagePairwise SegmentationFinal Segmentation p E: {0,1} n → R 0 → fg, 1 → bg n = number of pixels [slide credits: Kohli]

34 Application: Recognition and Segmentation from [Kohli et al. ‘08] Image Unaries only TextonBoost [Shotton et al. ‘06] Pairwise CRF only [Shotton et al. ‘06] P n Potts One super- pixelization another super- pixelization

35 Robust(soft) P n Potts model { 0 if x i = 0, i p f( ∑ x p ) otherwise h(x p ) = p p from [Kohli et al. ‘08] Robust P n PottsP n Potts

36 Application: Recognition and Segmentation From [Kohli et al. ‘08] Image Unaries only TextonBoost [Shotton et al. ‘06] Pairwise CRF only [Shotton et al. ‘06] P n Potts robust P n Potts (different f) One super- pixelization another super- pixelization

37 Same idea for surface-based stereo [Bleyer ‘10] One input image Ground truth depth Stereo with hard-segmentation Stereo with robust P n Potts This approach gets best result on Middlebury Teddy image-pair:

38 How is it done… H (X) = F ( ∑ x i ) Most general binary function: H (X) ∑ x i concave 0 The transformation is to a submodular pair-wise MRF, hence optimization globally optimal [slide credits: Kohli]

39 Higher order to Quadratic Start with P n Potts model: { 0 if all x i = 0 C 1 otherwise f(x) = x {0,1} n min f(x) min C 1 a + C 1 (1-a) ∑ x i x = x,a {0,1} Higher Order Function Quadratic Submodular Function ∑ x i = 0 a=0 f(x) = 0 ∑ x i > 0 a=1f(x) = C 1 [slide credits: Kohli]

40 Higher order to Quadratic min f(x) min C 1 a + C 1 (1-a) ∑ x i x = x,a {0,1} Higher Order FunctionQuadratic Submodular Function ∑xi∑xi 1 23 C1C1 C1∑xiC1∑xi [slide credits: Kohli]

41 Higher order to Quadratic min f(x) min C 1 a + C 1 (1-a) ∑ x i x = x,a {0,1} Higher Order Submodular Function Quadratic Submodular Function ∑xi∑xi 1 23 C1C1 C1∑xiC1∑xi a=1 a=0 Lower envelope of concave functions is concave [slide credits: Kohli]

42 Summary Submodular F 2 F 3 and beyond: minimization trick Non submodular –QPBO(P) Beyond F 3 – Robust HOP s i j t ij ∑xi∑xi a=1 a=0 f 2 (x) f 1 (x)


Download ppt "What Energy Functions Can be Minimized Using Graph Cuts? Shai Bagon Advanced Topics in Computer Vision June 2010."

Similar presentations


Ads by Google