Presentation is loading. Please wait.

Presentation is loading. Please wait.

EECS 20 Lecture 2 (January 19, 2001) Tom Henzinger Mathematical Language.

Similar presentations


Presentation on theme: "EECS 20 Lecture 2 (January 19, 2001) Tom Henzinger Mathematical Language."— Presentation transcript:

1 EECS 20 Lecture 2 (January 19, 2001) Tom Henzinger Mathematical Language

2 Let Evens = { x | (  y, y  Nats  x = 2· y ) }.

3 Mathematical Language Let Evens = { x | (  y, y  Nats  x = 2· y ) }. Constants

4 Mathematical Language Let Evens = { x | (  y, y  Nats  x = 2· y ) }. Constants Variables

5 Mathematical Language Let Evens = { x | (  y, y  Nats  x = 2· y ) }. Constants Variables Operators

6 Mathematical Language Let Evens = { x | (  y, y  Nats  x = 2· y ) }. Constants Variables Operators Quantifiers

7 Mathematical Language Let Evens = { x | (  y, y  Nats  x = 2· y ) }. Constants Variables Operators Quantifiers Definition

8 Mathematical Language Let Evens = { x | (  y, y  Nats  x = 2· y ) }. Constants Variables Operators Quantifiers Definition

9 Constants have meaning 20 a certain number Berkeley a certain city false a certain truth value

10 Variables have no meaning x y 0 z’

11 Operators on numbers number + number Result: number number ! number number = number truth value number  number truth value

12 Operators on cities merge ( city, city ) Result: city population-of ( city ) number has-a-university ( city ) truth value

13 Operators on truth values truth value  truth value Result: truth value truth value  truth value truth value ¬ truth value truth value truth value  truth value truth value truth value  truth value truth value

14 Expressions on constants have meaning 3 + 20 Result: 23 (3! + 2) · 4 32 4  population-of ( Berkeley ) true 4 · 20  4 + 20 false true  false false true  ( 4 + 20 ) not well-formed

15 Implication true  true Result: true true  false false false  true true false  false true

16 Expressions on variables have no meaning x + 20 (3! + y) · 4 x  y Free variables: x y x, y

17 Quantifiers remove free variables from expressions x = 0  x, x = 0  x, x = 0  y, x + 1 = y  x,  y, x + 1 = y  x,  y, x  y  x, x + 7 Result: free x true false free x true not well-formed

18 Every mathematical expression 1. is not well-formed (“type mismatch”), or 2. contains free variables, or 3. is a definition, or 4. has a meaning (e.g., 20, Berkeley, false).

19 SETS

20 Set constants { 1, 2, 3 } { Atlanta, Berkeley, Chicago, Detroit } { 1, 2, 3, 4, … }

21 Set operator anything  set Result: truth value 2  { 1, 2, 3 } true 2  { Atlanta, Berkeley } false

22 Set quantifier (  x, truth value ) Result: truth value (  x, truth value ) truth value { x | truth value } set

23 Quantifiers remove free variables from expressions { x | x  y } { x | x = 1  x = 2 } { x |  y, x = 2· y } { x | x + 7 } Result: free y { 1, 2 } { 2, 4, 6, 8, … } not well-formed

24 Bounded quantification (  x  set, truth value ) Result: truth value (  x  set, truth value ) truth value { x  set | truth value } set

25 Meaning of constants can be defined Let Nats = { 1, 2, 3, 4, … }. Let Bools = { true, false }. Define Cities = { Atlanta, Chicago, Berkeley, Detroit }. Define Ø = { }.

26 Let Evens = { x  Nats |  y  Nats, x = 2· y }. Let Evens be the set of all x  Nats such that x = 2· y for some y  Nats.


Download ppt "EECS 20 Lecture 2 (January 19, 2001) Tom Henzinger Mathematical Language."

Similar presentations


Ads by Google