Presentation is loading. Please wait.

Presentation is loading. Please wait.

Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Nutrition for Patients with Metabolic or Respiratory Stress Chapter 16.

Similar presentations


Presentation on theme: "Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Nutrition for Patients with Metabolic or Respiratory Stress Chapter 16."— Presentation transcript:

1 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Nutrition for Patients with Metabolic or Respiratory Stress Chapter 16

2 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response The body’s attempt to promote healing and resolve inflammation when homeostasis is disrupted Intensity of the stress response depends to some extent on the cause and/or severity of the initial injury Metabolic stress –Changes in metabolic rate –Heart rate –Blood pressure –Nutrient metabolism

3 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Hormonal response to stress –Ebb phase oImmediate post-injury phase oTypically lasts 12 to 24 hours oCharacterized by:  Shock with hypovolemia and diminished tissue oxygenation  Cardiac output, oxygen consumption, urinary output, and body temperature fall  Glucagon and catecholamine levels rise

4 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Hormonal response to stress (cont’d) –Treatment goals oRestore blood flow to organs oMaintain adequate oxygenation to all tissues oStop bleeding –Ebb phase ends when the patient is hemodynamically stable

5 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Hormonal response to stress (cont’d) –Flow phase oMetabolic response to stress oCounterregulatory hormones  Makes energy available to carry on essential bodily functions oState of hypercatabolism and hypermetabolism created

6 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Hormonal response to stress (cont’d) –Flow phase (cont’d) oOxygen consumption, cardiac output, carbon dioxide production, and body temperature increase oLength of phase depends on:  Severity of injury or infection  Development of complications –Glycogen is depleted within the first 24 hours after the injury

7 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Inflammatory response –Acute-phase response oBody’s attempt to destroy infectious agents and prevent further tissue damage oCharacterized by a change of at least 25% in the plasma concentration of certain proteins known as acute phase proteins  C-reactive protein is positive protein  Negative acute phase proteins decrease in response to inflammation; albumin is one example

8 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Inflammatory response –Acute-phase response (cont’d) oCytokines and other immune system molecules  Regulate acute phase proteins  Produce changes in other cells that cause systemic symptoms of inflammation  Anorexia  Fever  Lethargy  Weight loss

9 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Question The treatment goals of the ebb phase of the stress response are what? a. Maintain protein catabolism b. Maintain oxygenation to all tissues c. Decrease blood flow to nonvital organs d. Decrease bleeding

10 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Answer b. Maintain oxygenation to all tissues Rationale: Treatment goals are to restore blood flow to organs, maintain adequate oxygenation to all tissues, and stop bleeding. This initial phase ends when the patient is hemodynamically stable.

11 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Inflammatory response (cont’d) –Systemic inflammatory response syndrome (SIRS) oLife-threatening condition oMay occur when severe inflammation lasts longer than a few days oHeart rate, respiratory rate, white blood cell count, and/or body temperature become critically elevated oIf caused by infection, sepsis may occur

12 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Inflammatory response (cont’d) –Systemic inflammatory response syndrome (SIRS) (cont’d) oSIRS and sepsis cause:  Excessive fluid accumulation  Low blood pressure  Impaired blood flow oInadequate oxygenation of tissues can lead to shock and multiple organ failure –Patient’s prior nutritional status is an important predictor or morbidity and mortality

13 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Nutritional needs –Considered after the patient is hemodynamically stable –Overwhelming nutritional concern during metabolic stress is protein catabolism oCan lead to impaired immune system functioning, increased risk of infection, impaired or delayed wound healing, and increased mortality –Primary goal of nutrition therapy is to protect lean body mass and prevent or alleviate malnutrition

14 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Nutritional needs (cont’d) –Calories oIndirect calorimetry is rarely used oHarris–Benedict equation is not for the critically ill oBasal energy expenditure (BEE) oMultiply the patient’s weight in kilograms by a specified calorie level  Adjusted upward or downward based on the patient’s response

15 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Calories (cont’d) –Underfeeding oExcessive calorie intake increases metabolism, oxygen consumption, and carbon dioxide production  Increases the burden already placed on the heart and lungs to regulate blood gases  Refeeding syndrome

16 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Underfeeding (cont’d) –Feeding critically ill patients at 100% of calculated need is associated with worse, not better, clinical outcomes –Underfeeding during critical illness (80% calories) is associated with shorter ICU and hospital stays –Modest calorie intake is also associated with a higher chance of achieving ventilator independence before leaving the ICU –Hypocaloric intake is maintained for 3 to 5 days

17 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Nutritional needs (cont’d) –Protein oRecommendations for protein are not universally agreed upon  Range from 1.0 g/kg to 2.0 g/kg  Patients with severe burns may need 2 to 2.5 g/ kg oSpecific types of amino acids given may influence the stress response and recovery  Arginine and glutamine, two nonessential amino acids, may become conditionally essential during periods of stress

18 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Nutritional needs (cont’d) –Carbohydrates and fat oShould provide 50% to 60% of total calorie needs oFat may provide up to 40% of total calories –Fluid oHighly individualized requirements according to losses that occur through exudates, hemorrhage, emesis, diuresis, diarrhea, and fever oAvoid overhydration oDecreased renal output is a frequent complication of metabolic stress

19 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Nutritional needs (cont’d) –Micronutrients oVitamin and mineral requirements during stress are unclear oTrauma and burn patients have been documented to have high urinary and tissue losses of the trace elements selenium, zinc, and copper  When replaced:  Patients experienced significantly fewer infections  Wound healing also improved

20 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Method of feeding –Enteral nutrition (EN) is recommended over parenteral nutrition (PN) in critically ill patients who are hemodynamically stable and have a functional GI tract oCommon complication in critically ill patients is gastroparesis –Parenteral nutrition is required when the GI tract is nonfunctional oAssociated with increased rate of hyperglycemia

21 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins The Stress Response (cont’d) Method of feeding (cont’d) –Oral diets are provided as soon as possible –Nutrition support—either complete or supplemental tube feedings—is necessary when calorie needs are not met through an oral intake

22 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Question Is the following statement true or false? Systemic inflammatory response syndrome (SIRS) is a life-threatening condition that may occur when severe inflammation lasts longer than 24 hours.

23 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Answer False. Rationale: Systemic inflammatory response syndrome (SIRS) is a life-threatening condition that may occur when severe inflammation lasts longer than a few days.

24 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Burns Extensive burns are the most severe form of metabolic stress Fluid and electrolyte replacement to maintain adequate blood volume and blood pressure are the priorities of the initial post-burn period Degree of hypermetabolism and hypercatabolism in the metabolic response phase correlates to the extent of burn

25 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Burns (cont’d) Nutrition therapy –Priority is to meet calorie and protein needs oProtein needs are typically 2.0 to 2.5 g/kg  Especially if burns cover more than 10% of total body surface area oCalorie and protein needs increase if complications develop oVitamin C, vitamin A, and zinc, plus a multivitamin, are recommended by the Shriners Burn Institute

26 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Burns (cont’d) Nutrition therapy (cont’d) –Develop less gastroparesis when they are given nasogastric or nasoduodenal tube feedings within 8 to 12 hours after admission –When oral intake is less than 75% of estimated need for over 3 days, EN should be used for total or supplemental nutrition –Total parenteral nutrition is used with extreme caution

27 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Respiratory Stress Occurs when gas exchange between the air and blood is impaired May cause hypermetabolism When nutritional needs are not met, fewer nutrients are available to maintain respiratory muscle function Chronic or acute respiratory stress can lead to: –Respiratory failure –Multiple organ failure –Death

28 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Respiratory Stress (cont’d) Chronic obstructive pulmonary disease –As many as 60% of patients with chronic obstructive pulmonary disease (COPD) have malnutrition, which is associated with poor outcomes –Many patients with COPD are hypermetabolic –Chronic inflammation –Anorexia may occur –Early satiety

29 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Respiratory Stress (cont’d) Chronic obstructive pulmonary disease (cont’d) –Nutrition therapy oCorrecting or preventing malnutrition is the priority oHigh-calorie, high-protein diet is used oSome patients may be overweight from steroid use oFor patients hospitalized with exacerbation of COPD, calorie needs may be 140% above BEE oProtein need may be 1.2 g/kg body weight

30 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Question You are admitting a burn patient to your unit. He is a healthy 18-year-old, 6' 2" tall with a weight of 180 pounds. His burns cover over 15% of his body. What would you expect his approximate protein needs to be? a. 150 g to 191 g b. 159 g to 200 g c. 164 g to 205 g d. 175 g to 216 g

31 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Answer c. 164 g to 205 g Rationale: Protein needs are typically 2.0 to 2.5 g/kg especially if burns cover over 10% of total body surface area. 180/2.2 = 81.8 kg 81.8x2 = 163.6 81.8x2.5 = 204.5 Range of protein requirement = 163.6 g to 204.5 g

32 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Ventilator Dependency and Carbohydrate Restriction Patients on ventilator support may benefit from a restricted carbohydrate intake –Carbohydrates produce more carbon dioxide when they are metabolized than do either proteins or fats –This creates a greater burden on the lungs

33 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Promoting Maximum Intake in Patients Whose Needs Are High and Appetite Is Low Work with client and family to solicit food preferences Young children may regress in their eating behaviors Adults may prefer foods they associate with recovery as children (e.g., chicken soup)

34 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Encourage the family to bring food from home Discourage intake of empty-calorie food and beverages Provide nutrient-dense liquid supplements between meals Provide emotional support and allow the patient to verbalize feelings Promoting Maximum Intake in Patients Whose Needs Are High and Appetite Is Low (cont’d)

35 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins If possible, schedule debridement and other medical and surgical procedures at times when they are least likely to interfere with meals Provide pain medication as needed before meals Promoting Maximum Intake in Patients Whose Needs Are High and Appetite Is Low (cont’d)

36 Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins When TPN May Be Necessary For patients with: –Adynamic ileus –Intractable diarrhea –Bleeding related to Curling’s ulcer –Pancreatitis –Pseudoobstruction of the colon –Patients who cannot receive tube feedings for longer than 2 to 3 days


Download ppt "Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins Nutrition for Patients with Metabolic or Respiratory Stress Chapter 16."

Similar presentations


Ads by Google