Presentation is loading. Please wait.

Presentation is loading. Please wait.

Oblivious Transfer and Linear Functions Ivan Damgård, Louis Salvail, Christian Schaffner (BRICS, University of Aarhus, Denmark) Serge Fehr (CWI Amsterdam,

Similar presentations


Presentation on theme: "Oblivious Transfer and Linear Functions Ivan Damgård, Louis Salvail, Christian Schaffner (BRICS, University of Aarhus, Denmark) Serge Fehr (CWI Amsterdam,"— Presentation transcript:

1 Oblivious Transfer and Linear Functions Ivan Damgård, Louis Salvail, Christian Schaffner (BRICS, University of Aarhus, Denmark) Serge Fehr (CWI Amsterdam, The Netherlands) CRYPTO 2006, Santa Barbara Wednesday, August 23, 2006

2 2 / 25 Agenda OT and Randomized OT Characterisation of Sender-Security with Linear Functions Application: Universal OT Conclusion

3 3 / 25 1-2 Oblivious Transfer 1 - 2 OT S C S 0 ; S 1 C 2 f 0 ; 1 g [ W i esner s 70, R a b i n 81, E ven G o ld re i c h L empe l 82 K i l i an 88, C r ¶ epeau 89,... ] ² correc t ness: wor k s f or h ones t p l ayers, ² rece i ver-secur i t y: 8 ~ A d i s h ones t sen d ers, ~ A s h ou ld no t l earn C, ² sen d er-secur i t y: 8 ~ B d i s h ones t rece i vers, ~ B s h ou ld no t l earn S 1 ¡ C.

4 4 / 25 ( S C © S C ) © S C S C Randomized 1-2 Oblivious Transfer R an d 1 - 2 OT S 0 ; S 1 C 2 f 0 ; 1 g CS 0 ; S 1 S 0 © S 0 ; S 1 © S 1 S C

5 5 / 25 Definition Rand 1-2 OT R an d 1 - 2 OT C 2 f 0 ; 1 g S 0 ; S 1 S C [ C r ¶ epeau S avv i d es S c h a ® ner W u ll sc hl eger 06 ] P ro t oco l ¦ compu t es R an d 1 - 2 OT secure l y, i f 8 i npu t s C ¦ pro d ucesou t pu t ssuc h t h a t ² correc t ness: I f A an d B h ones t, A ge t s S 0 ; S 1, B ge t s S C. ° ° P S 1 ¡ D VS D D ¡ P unif ¢ P VS D D ° ° = 0 ² rece i ver-secur i t y: 8 ~ A d i s h ones t sen d ersw i t h v i ew U, P UC = P U ¢ P C. ² sen d er-secur i t y: 8 ~ B d i s h ones t rece i versw i t h v i ew V, 9 D 2 f 0 ; 1 g s. t. d ( S 1 ¡ D j VS D D ) = 0.

6 6 / 25 R an d 1 - 2 OT CS C S 0 ; S 1 2 f 0 ; 1 g Sender-Security for Rand OT of Bits 9 D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0 01 0 ½¼ 1 ¼0 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ), ) d ( S 0 © S 1 j V ) = 0 D ? V.

7 7 / 25 Sender-Security for Rand OT of Bits R an d 1 - 2 OT CS C S 0 ; S 1 2 f 0 ; 1 g 01 0 ½¼ 1 ¼0 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) 01 0 ¼¼ 1 00 01 0 ¼0 1 ¼0 S 0 S 1 S 1 S 0 P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) V. 9 D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0, d ( S 0 © S 1 j V ) = 0

8 8 / 25 Sender-Security for Rand OT of Bits V R an d 1 - 2 OT CS C S 0 ; S 1 2 f 0 ; 1 g 01 0 ab 1 cd S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) 01 0 aa 1 cc 01 0 0b-a 1 0 S 0 S 1 S 1 S 0 w l og: b ¸ aa + d = c + b c + ( b ¡ a ) = d ) 9 D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0 d ( S 0 © S 1 j V ) = 0 P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v )

9 9 / 25 Characterisation of Sender-Security ) 8 NDLF ¯ : d ( ¯ ( S 0 ; S 1 ) j V ) · " 9 D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) · ". V R an d 1 - 2 OT CS C S 0 ; S 1 2 f 0 ; 1 g `

10 10 / 25 Characterisation of Sender-Security 8 NDLF ¯ : d ( ¯ ( S 0 ; S 1 ) j V ) · " = 2 2 ` + 1 ) 9 D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) · ". T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) · " = 2 2 ` + 1 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) · ". R an d 1 - 2 OT CS C V. S 0 ; S 1 2 f 0 ; 1 g `

11 11 / 25 Proof for, perfect case ` = 2 00011011 00 abcd 01 efgh 10 ijkl 11 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0. P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v )

12 12 / 25 Proof for, perfect case ` = 2 00011011 00 abcd 01 efgh 10 ijkl 11 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) b + e = a + f P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.

13 13 / 25 Proof for, perfect case ` = 2 00011011 00 abcd 01 efgh 10 ijkl 11 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) b + e = a + f c + e = a + g P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.

14 14 / 25 Proof for, perfect case ` = 2 00011011 00 abcd 01 efgh 10 ijkl 11 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) b + e = a + f c + e = a + g d + e = a + h P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.

15 15 / 25 S 1 Proof for, perfect case ` = 2 00011011 00 abcd 01 efgh 10 ijkl 11 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 P S 0 S 1 V ( ¢ ; ¢ ; v ) b + e = a + f c + e = a + g d + e = a + h d + m = a + p d + i = a + l c + i = a + k c + m = a + o b + i = a + j b + m = a + n + + ¡ + + ¡ + ¡ ¡ b + d + e + g + j + l + m + o = a + c + f + h + i + k + n + p P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.

16 16 / 25 S 1 Proof for, perfect case ` = 2 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 P S 0 S 1 V ( ¢ ; ¢ ; v ) b + e = a + f c + e = a + g d + e = a + h d + m = a + p d + i = a + l c + i = a + k c + m = a + o b + i = a + j b + m = a + n + + ¡ + + ¡ + ¡ ¡ b + d + e + g + j + l + m + o = a + c + f + h + i + k + n + p P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0. 00101101010 abcd 0101 efgh 1010 ijkl 1 mnop ¯ ( s 0 ; s 1 ) : = s 2 0 © s 2 1

17 17 / 25 b + e = a + f c + e = a + g d + e = a + h d + m = a + p d + i = a + l c + i = a + k c + m = a + o b + i = a + j b + m = a + n + + ¡ + + ¡ + ¡ ¡ Proof for, perfect case ` = 2 0010110101 0 abcd 0101 efgh 1010 ijkl 1 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) ¯ ( s 0 ; s 1 ) : = s 2 0 © s 2 1 ¯ ( s 0 ; s 1 ) = 1 ¯ ( s 0 ; s 1 ) = 0 ¯ ( s 0 ; s 1 ) = 1 ¯ ( s 0 ; s 1 ) = 0 b + d + e + g + j + l + m + o = a + c + f + h + i + k + n + p P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.

18 18 / 25 b + e = a + f c + e = a + g d + e = a + h d + m = a + p d + i = a + l c + i = a + k c + m = a + o b + i = a + j b + m = a + n Proof for, perfect case ` = 2 0010110101 0 abcd 0101 efgh 1010 ijkl 1 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) ¯ ( s 0 ; s 1 ) = 1 ¯ ( s 0 ; s 1 ) = 0 b + d + e + g + j + l + m + o = a + c + f + h + i + k + n + p b + d + f + h + i + k + m + o = a + c + e + g + j + l + n + p ¯ ( s 0 ; s 1 ) : = s 1 0 © s 2 1 P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.

19 19 / 25 b + e = a + f c + e = a + g d + e = a + h d + m = a + p d + i = a + l c + i = a + k c + m = a + o b + i = a + j b + m = a + n Proof for, perfect case ` = 2 0010110101 0 abcd 0101 efgh 1010 ijkl 1 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) b + d + e + g + j + l + m + o = a + c + f + h + i + k + n + p 8 < : 8 < : b + d + f + h + i + k + m + o = a + c + e + g + j + l + n + p... P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.

20 20 / 25 Agenda OT and Randomized OT Characterisation of Sender-Security with Linear Functions Application: Universal OT Conclusion

21 21 / 25 Application: Universal OT R an d 1 - 2 OT S C C 2 f 0 ; 1 g U n i versa l OT X 2 f 0 ; 1 g 2 n P Y j X * S 0 ; S 1 Y. [ C ac h i n 98 ] H 1 ( X j Y ) ¸ n

22 22 / 25 X 0 ; X 1 2 f 0 ; 1 g n 0 1 1 1 0 1 Reduction: Protocol S 0 ; S 1 ran d om S 1 = ? S 0 UOT C = 0 F 0 ; F 1 ² correc t ness: I f A an d B h ones t, A ge t s S 0 ; S 1, B ge t s S C. Y = X C 0 1 1 ? ? ? X 1 X 0 F 0 2 R F F 1 2 R F ² rece i ver-secur i t y: 8 ~ A d i s h ones t sen d ersw i t h v i ew U, P UC = P U ¢ P C. H 1 ( X j Y ) ¸ n 8 < : 9 = ;

23 23 / 25 Reduction: Problem ran d om UOT S 0 ; S 1 F 0 ; F 1 F 0 2 R F F 1 2 R F Y. sen d er-secur i t y: 9 D s. t. d ( S 1 ¡ D j VDS D ) · " S D S 1 ¡ D = ? P Y j X 0 X 1 ¢ ¢ ¢ ¢ x 6 = x 0 ) F ( x ) ; F ( x 0 ) i n- d epen d en t an d un i f orm. X 0 2 f 0 ; 1 g n F 0 2 R F S 0 2 f 0 ; 1 g ` H 1 ( X 0 j V ) b i g ) d ( S 0 j VF ) sma ll P r i vacy A mp li¯ ca t i on X 0 ; X 1 2 f 0 ; 1 g n 0 1 0 1 X 1 X 0 9 = ; 8 < : H 1 ( X 0 X 1 j Y ) ¸ n

24 24 / 25 Reduction: Problem ran d om UOT S 0 ; S 1 F 0 ; F 1 F 0 2 R F F 1 2 R F Y. sen d er-secur i t y: 9 D s. t. d ( S 1 ¡ D j VDS D ) · " S D S 1 ¡ D = ? P Y j X 0 X 1 ¢ ¢ ¢ ¢ X 0 2 f 0 ; 1 g n F 0 2 R F S 0 2 f 0 ; 1 g ` X 0 ; X 1 2 f 0 ; 1 g n 0 1 0 1 X 1 X 0 9 = ; 8 < : T h eorem: 8 NDLF ¯ : d ( ¯ ( S 0 ; S 1 ) j V ) sma ll ) ¯ ( S 0 ; S 1 ) 2 f 0 ; 1 g X 1 2 f 0 ; 1 g n F 1 2 R F S 1 2 f 0 ; 1 g ` O b serve: T h ec l ass F ¯ : = f ¯ ( F 0 ( ¢ ) ; F 1 ( ¢ )) j F 0 2 F ; F 1 2 F g i s s t rong l y t wo-un i versa l. H 1 ( X 0 X 1 j V ) b i g ) d ( ¯ ( S 0 ; S 1 ) j V ) sma ll H 1 ( X 0 j V ) b i g P r i vacy A mp li¯ ca t i on ) d ( S 0 j VF ) sma ll PA H 1 ( X 0 X 1 j Y ) ¸ n

25 25 / 25 Conclusion Characterisation of sender-privacy: A protocol for Rand-OT is secure against a cheating receiver, iff he gets no information about any non-degenerate linear function. Observation: NDLF compose well with strongly two-universal hash functions. yields powerful technique: Enough min-entropy suffices to get an OT via (strongly) two-universal hashing, also works in quantum settings. Reductions: Simpler analyses of reductions from String-OT to weaker primitives, better parameters.

26 Thank you

27 27 / 25 PA : d ( F ( X ) |{z} ¯ ( S 0 ; S 1 ) j F ; V = v |{z} V ) · 2 ¡ 1 2 ¡ H 1 ( X j V = v ) ¡ 1 ¢ The Bottom Line Bob Alice 011001010110 v i ew V = v. S 0 ; S 1 2 f 0 ; 1 g ` X 2 f 0 ; 1 g n · " ¢ 2 ¡ 2 ` ¡ 1 9 C 0 s. t. d ( S 1 ¡ C 0 j VC 0 S C 0 ) · " F 2 R F ¯ : = f ¯ ( F 0 ( ¢ ) ; F 1 ( ¢ )) j F 0 2 F 0 ; F 1 2 F 1 g 101, 001 F 0 ; F 1 H 1 ( X j V = v ) ¸ ®n F 0 2 R F F 1 2 R F

28 28 / 25 Privacy Amplification (PA) 011001010110101001 X 2 f 0 ; 1 g n x 6 = x 0 ) F ( x ) ; F ( x 0 ) i n d epen d en t an d un i - f orm. F ( X ) 2 f 0 ; 1 g ` F ( X ) = ? v i ew V = v. T h m: d ( F ( X ) j F ; V = v ) · 2 ¡ 1 2 ¡ H 1 ( X j V = v ) ¡ ` ¢ F 2 R F. [ I mpag l i azzo L ev i n L u b y 89, H º as t a d ILL 99, B enne tt B rassar d C r ¶ epeau M aurer 95, R enner 06 ]


Download ppt "Oblivious Transfer and Linear Functions Ivan Damgård, Louis Salvail, Christian Schaffner (BRICS, University of Aarhus, Denmark) Serge Fehr (CWI Amsterdam,"

Similar presentations


Ads by Google